frontal bossing

Cleft Palate, Psychomotor Retardation, and Distinctive Facial Features

Clinical Characteristics
Ocular Features: 

The facial dysmorphism is present at birth together with the cleft palate.  Downslanting lid fissures, widely spaced eyes, and ptosis may be present.  Eyebrows have been described as sparse in one patient.  Strabismus and ocular apraxia are present in some children. 

Systemic Features: 

Three patients have been reported, one of whom also had a second deletion in a gene implicated in the Kabuki syndrome.  This individual had hypertrichosis and synophyrys whereas the others had sparse eyebrow and temporal hair.  The teeth are malformed with some conically shaped and widely spaced.  The forehead is prominent and the fingers are tapered and brachydactylous with 5th finger clinodactyly.

There are significant delays in achieving developmental milestones.  Hypotonia has been described.  Speech and walking in particular may be delayed for several years.   Physical growth may be delayed as well.  A variety of brain anomalies have been seen in some but not all individuals.  Hypospadius and cryptorchidism have been described.  All children reported have palatal anomalies.

Genetics

Heterozygous mutations in the KDM1A gene have been identified in two patients.  In another report a single patient had an out-of-frame 3-nucleotide deletion in the ANKRD11 gene (as sometimes found in Kabuki syndrome) plus a mutation in the KDM1A gene. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features

Chong JX, Yu JH, Lorentzen P, Park KM, Jamal SM, Tabor HK, Rauch A, Saenz MS, Boltshauser E, Patterson KE, Nickerson DA, Bamshad MJ. Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features. Genet Med. 2015 Dec 10. doi: 10.1038/gim.2015.161. [Epub ahead of print].

PubMed ID: 
26656649

Trichomegaly Plus Syndrome

Clinical Characteristics
Ocular Features: 

Eyelashes are described as ‘long’, and the eyebrows are bushy.  The majority of individuals have poor vision secondary to severe receptor dysfunction.  Night blindness and severe photophobia are features in some cases.  Both retinal and choroidal atrophy have been diagnosed in the first 5 years of life and most patients have a progressive and extensive pigmentary retinopathy.

Systemic Features: 

Scalp alopecia and sparse body hair is common in spite of the trichomegaly of the eyebrows and eyelashes.  Frontal bossing has been noted in some patients.  Pituitary dysfunction is suggested by low growth hormone levels, features of hypogonadotropic hypogonadism, and possibly hypothyroidism.

Some deficit of cognitive function is usually present and a few patients have been described as mentally retarded.  There is evidence of progressive neurological damage both centrally and peripherally. Developmental milestones are often achieved late and some individuals have been observed to regress during the first decade of life.  The peripheral neuropathy includes both sensory and motor components.  Sensory nerve action potentials may be lost in the first decade while early motor functions may regress during the same period.  Several patients have had evidence of progressive cerebellar ataxia.

Genetics

Compund heterozygous mutations in PNPLA6 (19p13.2), coding for neuropathy target esterase, have been found in several patients presumed to have this condition.  Autosomal recessive inheritance has been proposed on the basis of a single family in which an affected brother and sister were born to first cousin parents.   

The relationship of this disorder to that found in two cousins, offspring of consanguineous matings, described as ‘cone-rod congenital amaurosis associated with congenital hypertrichosis: an autosomal recessive condition’ (204110 ) is unknown.  They were described as having visual impairment from birth and profound photophobia.  Fundus changes were minimal with a bull’s eye pattern of pigment changes in the macula described as indicative of a rod-cone congenital amaurosis.  ERG responses were unrecordable.  These individuals apparently did not have other somatic, psychomotor or neurologic deficits.

Mutations in PNPLA6 occur in other conditions including a form of Bardet-Biedl Syndrome (209900), and Boucher-Neuhauser Syndrome (215470) also known as Chorioretinopathy, Ataxia, Hypogonadism Syndrome in this database.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for this condition although growth hormone and testosterone supplementation have been reported to have the appropriate selective effects.

References
Article Title: 

Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes

Hufnagel RB, Arno G, Hein ND, Hersheson J, Prasad M, Anderson Y, Krueger LA, Gregory LC, Stoetzel C, Jaworek TJ, Hull S, Li A, Plagnol V, Willen CM, Morgan TM, Prows CA, Hegde RS, Riazuddin S, Grabowski GA, Richardson RJ, Dieterich K, Huang T, Revesz T, Martinez-Barbera JP, Sisk RA, Jefferies C, Houlden H, Dattani MT, Fink JK, Dollfus H, Moore AT, Ahmed ZM. Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes. J Med Genet. 2015 Feb;52(2):85-94.

PubMed ID: 
25480986

GAPO Syndrome

Clinical Characteristics
Ocular Features: 

Progressive optic atrophy is considered part of this syndrome but it is not a consistent feature.  One patient with the suspected diagnosis had papilledema while other individuals may have congenital glaucoma, buphthalmos, band keratopathy, and keratoconus.  White eyelashes have been described.  Myelinated nerve retinal nerve fibers may be prominent.

Systemic Features: 

This is a rare congenital disorder with so far incomplete phenotypic delineation. The diagnosis can be made soon after birth from the general facial and body morphology.  The dysmorphism is secondary to marked bone growth retardation and metaphyseal dysplasia, resulting in a flat midface, frontal bossing, micrognathism, chest deformities, and vertebral anomalies. Psychomotor retardation is common but the extent of cognitive deficits is unknown.  The permanent teeth may begin to develop but fail to erupt (pseudoanodontia). Even primary dentition is often abnormal.  Alopecia is a feature although some individuals do have sparse body hair, at least for a period of time.  Anomalous blood vessels such as dilated scalp veins are sometimes evident.   Hypogonadism has been reported in both sexes.  Individuals are subject to recurrent ear and respiratory infections. 

Genetics

GAPO occurs in both sexes.  The presence of parental consanguinity in many families suggests autosomal recessive inheritance but no mutation or gene has been described.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment is directed at individual problems.  Prompt treatment of respiratory infections is important.

References
Article Title: 

Ophthalmic findings in GAPO syndrome

Ilker SS, Ozt?ork F, Kurt E, Temel M, G?ol D, Sayli BS. Ophthalmic findings in GAPO syndrome. Jpn J Ophthalmol. 1999 Jan-Feb;43(1):48-52.

PubMed ID: 
10197743

Adrenoleukodystrophy, Autosomal

Clinical Characteristics
Ocular Features: 

This early onset and rapidly progressive form of adrenoleukodystrophy is rare.  The early onset and rapidly fatal course of the disease has limited full delineation of the ocular features.  The most striking is the presence of 'leopard-spots' pigmentary changes in the retina.  Polar cataracts, strabismus, and epicanthal folds have also been reported. 

Systemic Features: 

Onset of symptoms occurs shortly after birth often with seizures and evidence of psychomotor deficits.  Rapid neurologic deterioration begins at about 1 year of age with death usually by the age of 3 years.  Hyperpigmentation of the skin may be apparent a few months after birth.  Opisthotonus has been observed.  The ears may be low-set, the palate is highly arched, and the nostrils anteverted.  Frontal bossing may be present.  Serum pipecolic acid and very-long-chain fatty acids (VLCFAs) can be markedly elevated.  Cystic changes in the kidneys have been reported. 

Genetics

This is an autosomal recessive peroxismal disorder resulting from homozygous mutations in receptor gene mutations such as PEX1, PEX5, PEX13, and PEX26.

There is also an X-linked recessive adrenoleukodystrophy (300100) sometimes called ALD but it lacks some of the morphologic features and is somewhat less aggressive. 

Neonatal adrenoleukodystrophy along with infantile Refsum disease (266510, 601539) and Zellweger syndrome (214100) are now classified as Zellweger spectrum or perioxismal biogenesis disorders.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment is mainly supportive for associated health problems. 

References
Article Title: 

Hallermann-Streiff Syndrome

Clinical Characteristics
Ocular Features: 

Nearly all patients (80+ %) have microphthalmia and bilateral congenital cataracts.  The eyebrows may be hypoplastic and the eyelashes likewise are sparse.  The lid fissures often slant down and telecanthus has been noted.  The distance between the two eyes appears reduced.  Blue sclerae, nystagmus, strabismus, and glaucoma are present in 10 to 30% of patients.

Systemic Features: 

The facies are sometimes described as ‘bird-like’ with a beaked nose, brachycephaly, and micrognathia.  Microstomia with a shortened ramus and forward displacement of the termporomandibular joints is characteristic. Upper airway obstruction may occur with severe respiratory distress.  The forehead is relatively prominent, the palate is highly arched, and the teeth are often small and some may be missing with misalignment of others.  A few teeth may even be present at birth (natal teeth).  Children appear petite and are often short in stature.  Scalp hair is thin, especially in the frontal and occipital areas, and the skin is atrophic.  Developmental delays are common but most patients have normal or near-normal intelligence.

Genetics

Most cases are sporadic but some have mutations in the GJA1 gene (6q21-q23.2).  Both autosomal dominant and autosomal recessive inheritance have been postulated.  Reproductive fitness may be low but rare affected individuals have had affected offspring.  Males and females are equally affected.

This disorder is allelic to oculodentodigital dysplasia (257850, 164200).

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

Airway obstruction may require intervention and its risks must be considered during administration of general anesthesia.  Lens opacification may be severe even early in life and requires prompt surgical intervention to prevent amblyopia.

References
Article Title: 

Chondrodysplasia Punctata 2

Clinical Characteristics
Ocular Features: 

Early onset cataracts, often sectorial, are the major ocular feature of this syndrome.  There may be local vitreoretinal abnormalities leading to localized detachments and retinoschisis.

Systemic Features: 

The cartilage disease in this disorder leads to short stature that is often asymmetrical.  There is considerable variation in skeletal manifestations as the spine as well as the limbs can be involved.  The skin at birth may be scaly and erythrodermic.  Later the skin pigmentation may assume a whorled pattern and hyperkeratosis appears, often in a segmental pattern consistent with X-chromosomal mosaicism.  The skin may also be ichthyotic.  The nasal bridge is often flat with frontal bossing.  Flexion contractures are sometimes seen.  Cicatricial alopecia and coarse hair are often noted in adults.

Genetics

A number of skeletal disorders are classified as chondrodysplasia punctata, and there is considerable clinical and genetic heterogeneity (see also rhizomelic chondrodysplasia punctata [215100] in this database for an autosomal recessive form) which has yet to be worked out.  The disorder described here is an X-linked dominant disorder with lethality in males.  It results from a mutation in the EBP gene (Xp11.23-p11.22) causing difficulty in converting lanosterol to cholesterol.  The diagnosis can be confirmed by finding increased plasma accumulation of precursors of sterols 8(9)-cholestenol and 8-dehydrocholesterol. Rare severely affected males have been reported. 

The X-linked recessive (CDPX1;302950), autosomal dominant tibia-metacarpal (118651), and humero-metacarpal types are not associated with cataracts.

Pedigree: 
X-linked dominant, father affected
X-linked dominant, mother affected
Treatment
Treatment Options: 

Cataract extraction may improve vision.

References
Article Title: 

Basal Cell Nevus Syndrome

Clinical Characteristics
Ocular Features: 

Eyelid basal-cell carcinomas are the most common ocular finding of this syndrome.  These malignancies may be multiple and may occur on the neck, chest, back, arms and elsewhere on the face.   Those on the eyelids generally have their onset in the postpubertal period, usually by age 35 years, and are often multiple.  Their indolent nature can result in considerably delay in diagnosis, however, and local recurrences are common.  Deformities of the skull often result in the appearance of hypertelorism and proptosis.  Epidermal cysts are found in one-fourth of patients, especially on the palms, but may occur in the tarsal conjunctiva as well.  Less common reported ocular findings are colobomas, glaucoma, nystagmus, strabismus, and cataracts but these may simply be associations.

Systemic Features: 

This disorder is one of a few in which a disposition to neoplasia is associated with skeletal deformities.  These include bifid ribs, scoliosis, skull deformities such as frontal bossing, increased occipitofrontal circumference, broad nasal root with hypertelorism, mandibular prognathia, and bony cysts.  Medulloblastoma is an infrequent but important sign.  Palmar and/or plantar pits are often present.  Basal cell carcinomas and jaw cysts occur in over 90% of patients by the age of 40 years.  Invasive oral tumors are found in 78% of individuals.

Genetics

This is an autosomal dominant disorder, caused by mutations in the PTCH1 gene located on chromosome 9 (9q22.3).  Interestingly, somatic mutations in the PTCH1 gene have also been found in isolated cases with only basal cell carcinoma or medulloblastoma.  Perhaps 40% of cases arise de novo, i.e., without a family history, and older paternal age at conception increases the risk of new mutations.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment is directed at the location of clinical disease with excision of basal cell carcinomas having the highest priority.  Patients must be monitored throughout life for new lesions as well as recurrence at treated sites. Radiotherapy and non-essential diagnostic X-rays should probably be avoided due to sensitivity to ionizing radiation.

Oral administration of an experimental small molecule signaling inhibitor (GDC-0449 or Vismodegib; Genetech) of the Hedgehog signaling pathway has shown promise in reduction of the number of new lesions as well as shrinkage of existing skin lesions.

References
Article Title: 

Basal cell nevus syndrome: a brave new world

Goldberg LH, Firoz BF, Weiss GJ, Blaydorn L, Jameson G, Von Hoff DD. Basal cell nevus syndrome: a brave new world. Arch Dermatol. 2010 Jan;146(1):17-9. PubMed PMID: 20083687.

PubMed ID: 
20083687

Neuhauser Syndrome

Clinical Characteristics
Ocular Features: 

This rare disorder is characterized by profound mental retardation and megalocornea together with nonspecific facial features including epicanthal folds, broad nasal root, frontal bossing and antimongoloid lid slanting.

Systemic Features: 

Hypotonia and marked psychomotor retardation are the most prominent systemic features.   Short stature, hypercholesterolemia, seizures and hypothyroidism have also been reported.

Genetics

No specific mutation has been found.  Most cases occur sporadically.  The mode of inheritance is presumed to be autosomal recessive on the basis of parental consanquinity found in occasional parents with multiple affected offspring.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.
 

References
Article Title: 

Association of CHRDL1 Mutations and Variants with X-linked Megalocornea, Neuhäuser Syndrome and Central Corneal Thickness

Davidson AE, Cheong SS, Hysi PG, Venturini C, Plagnol V, Ruddle JB, Ali H, Carnt N, Gardner JC, Hassan H, Gade E, Kearns L, Jelsig AM, Restori M, Webb TR, Laws D, Cosgrove M, Hertz JM, Russell-Eggitt I, Pilz DT, Hammond CJ, Tuft SJ, Hardcastle AJ. Association of CHRDL1 Mutations and Variants with X-linked Megalocornea, Neuhauser Syndrome and Central Corneal Thickness. PLoS One. 2014 Aug 5.

PubMed ID: 
25093588

PNPLA6 mutations cause Boucher-Neuhauser and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum

Synofzik M, Gonzalez MA, Lourenco CM, Coutelier M, Haack TB, Rebelo A, Hannequin D, Strom TM, Prokisch H, Kernstock C, Durr A, Schols L, Lima-Martinez MM, Farooq A, Schule R, Stevanin G, Marques W Jr, Zuchner S. PNPLA6 mutations cause Boucher-Neuhauser and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum. Brain. 2013 Dec 19. [Epub ahead of print].

PubMed ID: 
24355708
Subscribe to RSS - frontal bossing