autosomal dominant?

Sweeney-Cox Syndrome

Clinical Characteristics
Ocular Features: 

 Periorbital and facial anomalies were present in the two reported patients.  Pseudoproptosis (considered secondary to deficiency of the bony orbits) accentuated by midface hypoplasia, and upper lid colobomas have been observed.  The globes were described as "small" although there were no "concerns" regarding vision in the single male patient.  Electrodiagnostic tests were "normal."    

Systemic Features: 

Multiple anomalies and malformations were present in the two reported patients, an unrelated male and female.  Severe facial dysmorphism secondary to uneven skull bone formation and suture closures is present.  The metopic ridge is prominent, the orbital bones are deficient, the occiput is flattened, the anterior fontanel and coronal sutures are wide.  Midfacial hypoplasia is present.  The neck is broad and the shoulders are narrow.  The fingers are long and the distal phalanges may be fixed in flexion.  The ears are low-set, small, and cupped.  The palate is high and may be cleft.  Cutaneous syndactyly of the fingers has been observed.  Variable developmental delays/learning difficulties are present.

The male had an imperforate anus, undescended testes and a 60 dB hearing loss.  The female had a midline cleft palate with choanal atresia requiring a tracheostomy from birth and required fundoplication and gastrostomy for gastroesophageal reflux.

Genetics

Heterozygous missense mutations in the TWIST1 gene (7p21.1) were found in both reported individuals.  These appear to have arisen de novo.

Mutations in the same gene have also been found in the Saethre-Chotzen Syndrome (101400) in which some of the same skeletal features are found.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported for the general condition but individual malformations may require attention.  The lid colobomas were repaired in the female but corneal exposure remained and corneal scarring and phthisis developed in the right eye.  The left eye retained some vision ("able to see large objects").

References
Article Title: 

Localized TWIST1 and TWIST2 basic domain substitutions cause four distinct human diseases that can be modeled in Caenorhabditis elegans

Kim S, Twigg SRF, Scanlon VA, Chandra A, Hansen TJ, Alsubait A, Fenwick AL, McGowan SJ, Lord H, Lester T, Sweeney E, Weber A, Cox H, Wilkie AOM, Golden A, Corsi AK. Localized TWIST1 and TWIST2 basic domain substitutions cause four distinct human diseases that can be modeled in Caenorhabditis elegans. Hum Mol Genet. 2017 Jun 1;26(11):2118-2132.

PubMed ID: 
28369379

Diagnostic value of exome and whole genome sequencing in craniosynostosis

Miller KA, Twigg SR, McGowan SJ, Phipps JM, Fenwick AL, Johnson D, Wall SA, Noons P, Rees KE, Tidey EA, Craft J, Taylor J, Taylor JC, Goos JA, Swagemakers SM, Mathijssen IM, van der Spek PJ, Lord H, Lester T, Abid N, Cilliers D, Hurst JA, Morton JE, Sweeney E, Weber A, Wilson LC, Wilkie AO. Diagnostic value of exome and whole genome sequencing in craniosynostosis. J Med Genet. 2017 Apr;54(4):260-268.

PubMed ID: 
27884935

Sweeney-Cox Syndrome

Clinical Characteristics
Ocular Features: 

Ophthalmologic examinations have not been reported.  However, periorbital and facial anomalies were present in the two reported patients.  Pseudoproptosis (considered secondary to deficiency of the bony orbits) accentuated by midface hypoplasia, and upper lid colobomas have been observed.  The globes were described as "small" although there were no "concerns" regarding vision in the single male patient.  Electrodiagnostic tests were "normal."    

Systemic Features: 

Multiple anomalies and malformations were present in the two reported patients, an unrelated male and female.  Severe facial dysmorphism secondary to uneven skull bone formation and suture closures is present.  The metopic ridge is prominent, the orbital bones are deficient, the occiput is flattened, the anterior fontanel and coronal sutures are wide.  Midfacial hypoplasia is present.  The neck is broad and the shoulders are narrow.  The fingers are long and the distal phalanges may be fixed in flexion.  The ears are low-set, small, and cupped.  The palate is high and may be cleft.  Cutaneous syndactyly of the fingers has been observed.  Variable developmental delays/learning difficulties are present.

The male had an imperforate anus, undescended testes and a 60 dB hearing loss.  The female had a midline cleft palate with choanal atresia requiring a tracheostomy from birth and required fundoplication and gastrostomy for gastroesophageal reflux.  

Genetics

Heterozygous missense mutations in the TWIST1 gene (7p21.1) were found in both reported individuals.  These appear to have arisen de novo.

Mutations in the same gene have also been found in the Saethre-Chotzen Syndrome (101400) in which some of the same skeletal features are found.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported for the general condition but individual malformations may require attention.  The lid colobomas were repaired in the female but corneal exposure remained and corneal scarring and phthisis developed in the right eye.  The left eye retained some vision ("able to see large objects").

References
Article Title: 

Localized TWIST1 and TWIST2 basic domain substitutions cause four distinct human diseases that can be modeled in Caenorhabditis elegans

Kim S, Twigg SRF, Scanlon VA, Chandra A, Hansen TJ, Alsubait A, Fenwick AL, McGowan SJ, Lord H, Lester T, Sweeney E, Weber A, Cox H, Wilkie AOM, Golden A, Corsi AK. Localized TWIST1 and TWIST2 basic domain substitutions cause four distinct human diseases that can be modeled in Caenorhabditis elegans. Hum Mol Genet. 2017 Jun 1;26(11):2118-2132.

PubMed ID: 
28369379

Diagnostic value of exome and whole genome sequencing in craniosynostosis

Miller KA, Twigg SR, McGowan SJ, Phipps JM, Fenwick AL, Johnson D, Wall SA, Noons P, Rees KE, Tidey EA, Craft J, Taylor J, Taylor JC, Goos JA, Swagemakers SM, Mathijssen IM, van der Spek PJ, Lord H, Lester T, Abid N, Cilliers D, Hurst JA, Morton JE, Sweeney E, Weber A, Wilson LC, Wilkie AO. Diagnostic value of exome and whole genome sequencing in craniosynostosis. J Med Genet. 2017 Apr;54(4):260-268.

PubMed ID: 
27884935

Spastic Paraplegia, Intellectual Disability, Nystagmus, and Obesity

Clinical Characteristics
Ocular Features: 

Patients have deep-set eyes with nystagmus, reduced vision, and often an esotropia perhaps secondary to hypermetropia.  In one of 3 reported patients the optic discs were described pale.

Systemic Features: 

Prominent foreheads are present at birth along with full cheeks and a prominent forehead.  Children grow rapidly in the first year eventually reaching the 90th percentiles in weight, height, and head circumference although neurologically they are developmentally delayed.  Speech and walking may be delayed as well.  While limbs have increased tone together with hyperreflexia, the trunk exhibits hypotonia.

Brain imaging reveals delayed myelination, dilated lateral ventricles, reduced while matter, and cerebral atrophy.

Genetics

Heterozygous mutations in the KIDINS220 gene (2p25.1) have been identified in 3 unrelated patients.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Heterozygous KIDINS220/ARMS nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity

Josifova DJ, Monroe GR, Tessadori F, de Graaff E, van der Zwaag B, Mehta SG; DDD Study., Harakalova M, Duran KJ, Savelberg SM, Nijman IJ, Jungbluth H, Hoogenraad CC, Bakkers J, Knoers NV, Firth HV, Beales PL, van Haaften G, van Haelst MM. Heterozygous KIDINS220/ARMS nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity. Hum Mol Genet. 2016 Jun 1;25(11):2158-2167.

PubMed ID: 
27005418

Epileptic Encephalopathy, Early Infantile 47

Clinical Characteristics
Ocular Features: 

The fundus is normal early but optic atrophy with narrowed vessels develops eventually.  Cerebral visual impairment has been described.  VEPs were normal at 4 months of age in one patient.

Systemic Features: 

Tonic seizures have their onset in the first month of life.  These become refractory as documented by the EEG which shows severe background slowing, multifocal origins, and hypsarrhythmia.  Psychomotor development is severely delayed and accompanied by profound intellectual disability.  The two reported children were unable to stand and never developed speech.  Feeding difficulties requires tube feeding.  Microcephaly eventually develops along with axial hypotonia and limb ataxia.

Brain MRI was normal at 5 months of age in one individual but at 6 years old showed cerebellar atrophy.  Her younger male sibling at 2 months of age had a normal MRI but cerebellar atrophy was present at 3 years of age.  He died at 3.5 years while his older sib died at age 7 years.

Genetics

Heterozygous mutations in the FGF12 gene (3q28-q29) are responsible for this condition.  One family with 2 affected children has been reported but neither parent carried the mutation in somatic cells suggesting germline mosaicism.

For autosomal recessive forms of early onset epileptic encephalopathy in this database see Epileptic Encephalopathy, Early Infantile 28 (616211) and Epileptic Encephalopathy, Early Infantile 48 (617276).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is available for the general condition.  Complete supportive care is required.  Seizures are described as 'refractory' to treatment.

References
Article Title: 

Encephalocraniocutaneous Lipomatosis

Clinical Characteristics
Ocular Features: 

Ocular choristomas of the periocular tissue such as epibulbar dermoids or lipodermoids are seen in 80% of individuals.  Some degree of microphthalmia, a 'hypertrophic' conjunctiva, and sclerocornea have been reported.  The pupils are small and iris hypoplasia with anterior chamber anomalies has been described.  The macular reflex can be absent and colobomas of the eyelids (and rarely uveal tract) have been seen.

Systemic Features: 

Preauricular skin tags may be present.   Fatty tissue nevi associated with alopecia as well as frontotemporal or zygomatic subcutaneous fatty lipomas, and focal dermal hypoplasia are seen externally in many patients.   Coarctation and/or hypoplasia of the thoracic aorta along with aortic valve anomalies are sometimes present.

Intracranial and intraspinal lipomas are present in over 60% of individuals.  Arachnoid cysts with ventricular enlargement, and leptomeningeal angiomatosis are frequently present.  Jawbone cysts and tumors are common. The skull and heart may also have lipomas.  Seizures and some intellectual disability have been diagnosed in many affected individuals but a third or more have normal intellect.  The affected cortex may calcify later in life.

Genetics

ECCL is considered to result from postzygotic activating mutations in the FGFR1 gene (8p11.23) resulting in a mosaic distribution.  This may help explain the highly variable and widespread distribution of skin and CNS lesions.  A 5-year-old female with an affected father and paternal grandmother have been reported suggesting autosomal dominant inheritance.

Mutations in the same gene have been found in Pfeiffer syndrome (101600).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no treatment for the overall condition but selective removal of tumors with cosmetic and pressure consequences should be considered.

References
Article Title: 

Mosaic Activating Mutations in FGFR1 Cause Encephalocraniocutaneous Lipomatosis

Bennett JT, Tan TY, Alcantara D, Tetrault M, Timms AE, Jensen D, Collins S, Nowaczyk MJ, Lindhurst MJ, Christensen KM, Braddock SR, Brandling-Bennett H, Hennekam RC, Chung B, Lehman A, Su J, Ng S, Amor DJ; University of Washington Center for Mendelian Genomics; Care4Rare Canada Consortium, Majewski J, Biesecker LG, Boycott KM, Dobyns WB, O'Driscoll M, Moog U, McDonell LM. Mosaic Activating Mutations in FGFR1 Cause Encephalocraniocutaneous Lipomatosis. Am J Hum Genet. 2016 Mar 3;98(3):579-87.

PubMed ID: 
26942290

Anterior Segment, Brain, and Facial Anomalies

Clinical Characteristics
Ocular Features: 

The interpupillary distance appears abnormally wide.  VEP and ERG responses suggest abnormal retinal bipolar cells.  Specular microscopy reveals variable sizes and shapes of corneal endothelial cells with scattered vesicles and large 'holes' in the usual hexagonal array.  The iris may be malformed (no collarette, stromal hypoplasia) and there may be peripheral iridocorneal adhesions.  Elevated IOP, band keratopathy, corneal clouding, and keratoconus have been reported.  Visual acuity is impaired to some extent, from near normal (20/25) to NLP.  Progressive optic atrophy was observed in one patient.

Systemic Features: 

Four members of a 3 generation family had malformed pinnae (posterior placement and rotation).  Other features variably present were an empty sella turcica, posterior fossa cyst, and hydrocephalus. The propositus also was found to have abnormal auditory bipolar cells based on the audiogram and audio-evoked brainstem responses.

Genetics

Based on direct sequencing in one family (3 adults and 1 child), this condition seems to be caused by heterozygous variations or mutations in the VSX1 gene (20p11.21). 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Monitoring for glaucoma and appropriate treatment are indicated.  Hearing tests should be performed early.  The usual treatments for keratoconus should be considered.  Excess brain fluid may need surgical drainage.

.

References
Article Title: 

Beare-Stevenson Syndrome

Clinical Characteristics
Ocular Features: 

The midface hypoplasia and shallow orbits result in the appearance of prominent eyes.  Ptosis and hypertelorism have been reported while the palpebral fissures are downslanting. One patient has been reported to have optic atrophy.  Another patient was described with cloudy corneas, irregular irides and nonreactive pupils.

Systemic Features: 

Pregnancies may be complicated by polyhydramnios.  Infants are born with craniosynostosis with a cloverleaf pattern usually.  The skull is often shortened in the anteroposterior axis with flattening of the occipital region.  The skin is deeply furrowed with the cutis gyrata patterns most prominent in the posterior scalp but also present on the palms, soles, pinnae, and elsewhere.  Acanthosis nigricans is often present.

There is midface hypoplasia and nearly all individuals have intellectual disability.

The external ear canals can be atretic, the nares are often anteverted, and the mouth may be small.  An excess number of neonatal teeth and hypoplastic nails have been noted.  Hydrocephalus is common.  The umbilical stump is often unusually prominent.  Anogenital anomalies such as an anteriorly placed anus, cryptorchidism, and bifid scrotum may be present.  Pyloric stenosis is sometimes present.

Upper airway obstruction with respiratory distress may necessitate a tracheotomy. A cartilaginous tracheal sleeve replacing the normal C rings of cartilage has been found in several infants. These can be difficult to detect and their presence may have been responsible for breathing restrictions that has led to the demise of some children before two years of age.

Genetics

Reported cases have occurred sporadically.  Increased paternal age has been suggested as a factor in the occurrence of heterozygous mutations in the FGFR2 gene (10q26.13) which have been identified in some individuals.

Other forms of craniosynostosis in which mutations in FGFR2 have been found are: Crouzon Syndrome (123500), Pfeiffer Syndrome (101600), Apert Syndrome (101200), Jackson-Weiss Syndrome (123150), and Saethre-Chotzen Syndrome (101400).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no general treatment for this syndrome.  Several infants have had tracheotomies and CNS shunts.

References
Article Title: 

Beare-Stevenson cutis gyrata syndrome

Hall BD, Cadle RG, Golabi M, Morris CA, Cohen MM Jr. Beare-Stevenson cutis gyrata syndrome. Am J Med Genet. 1992 Sep 1;44(1):82-9. PubMed PMID: 1519658.

PubMed ID: 
1519658

Corneal Dystrophy, Band-Shaped

Clinical Characteristics
Ocular Features: 

Symptoms of ocular irritation with tearing, conjunctival injection and decreased vision can be present at birth but more often is evident later in the first decade of life.  The band is located in the cornea in the palpebral fissure area in a horizontal pattern.  Apparently no other lesions are present in the eye.    

Systemic Features: 

None reported.

Genetics

Only three families with familial, isolated band keratopathy have been reported.  These were described in the mid-twentieth century and it is possible that they had underlying ocular and corneal disease.  In one family 3 of 9 children, the product of a first-cousin mating, were affected consistent with autosomal recessive inheritance.  In two of these the keratopathy was first noted during puberty while it was present at birth in the third child.

 In another family the band keratopathy was seen in a brother and sister at 11 and 16 years old.

In the third family a father and son were affected.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

Topically applied EDTA solutions are sometimes effective in removing lesions consisting of calcium deposits but this has not been reported to be effective in the hereditary form of band keratopathy. 

References
Article Title: 

Baraitser-Winter Syndrome 2

Clinical Characteristics
Ocular Features: 

Hypertelorism, high arched eyebrows, ptosis, and  colobomas occur in the majority of individuals.

Systemic Features: 

Short stature, postnatal microcephaly, lissencephaly, intellectual disability, seizures, and sensorineural hearing loss are common.

Genetics

This syndrome can be considered to be an autosomal dominant disorder secondary to heterozygous mutations in the ACTG1 gene (17q25.3).  However, all patients have been sporadic.

Mutations in ACTG1 are also responsible for autosomal dominant progressive nonsyndromic hearing loss.  

A similar but unique condition known as Baraitser-Winter syndrome 1 (243310) is caused by heterozygous mutations in the ACTB gene. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no known treatment but special education, hearing devices, and physical therapy may be helpful.

References
Article Title: 

Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases

Verloes A, Di Donato N, Masliah-Planchon J, Jongmans M, Abdul-Raman OA, Albrecht B, Allanson J, Brunner H, Bertola D, Chassaing N, David A, Devriendt K, Eftekhari P, Drouin-Garraud V, Faravelli F, Faivre L, Giuliano F, Guion Almeida L, Juncos J, Kempers M, Eker HK, Lacombe D, Lin A, Mancini G, Melis D, Lourenco CM, Siu VM, Morin G, Nezarati M, Nowaczyk MJ, Ramer JC, Osimani S, Philip N, Pierpont ME, Procaccio V, Roseli ZS, Rossi M, Rusu C, Sznajer Y, Templin L, Uliana V, Klaus M, Van Bon B, Van Ravenswaaij C, Wainer B, Fry AE, Rump A, Hoischen A, Drunat S, Riviere JB, Dobyns WB, Pilz DT. Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases. Eur J Hum Genet. 2014 Jul 23.

PubMed ID: 
25052316

De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome

Riviere JB, van Bon BW, Hoischen A, Kholmanskikh SS, O'Roak BJ, Gilissen C, Gijsen S, Sullivan CT, Christian SL, Abdul-Rahman OA, Atkin JF, Chassaing N, Drouin-Garraud V, Fry AE, Fryns JP, Gripp KW, Kempers M, Kleefstra T, Mancini GM, Nowaczyk MJ, van Ravenswaaij-Arts CM, Roscioli T, Marble M, Rosenfeld JA, Siu VM, de Vries BB, Shendure J, Verloes A, Veltman JA, Brunner HG, Ross ME, Pilz DT, Dobyns WB. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat Genet. 2012 Feb 26;44(4):440-4.

PubMed ID: 
22366783

Nystagmus 4, AD

Clinical Characteristics
Ocular Features: 

Abnormal eye movements generally are present as early as 1 to 2 years of life and are stable but they are not congenital in origin.  Eye movement anomalies are somewhat variable and unusual with gaze-paretic nystagmus and poor or absent smooth pursuit most common.  The nystagmus may also be upbeat in direction.  A poor vestibuloocular reflex might be part of this eye movement complex.  Vision in many individuals is normal but mildly decreased in others.  Strabismus (primarily esotropia and exophoria) is common.

Systemic Features: 

Mild "balance problems" have been reported by some patients.  One individual reported intermittent dizziness.  No other cerebellar signs are present.  Neuroimaging found no CNS abnormalities in one patient. Seizures and ataxia were separately reported in two persons.

Genetics

The single reported family shows a transmission pattern consistent with autosomal dominant inheritance.  A locus cosegregating with the condition has been found at 13q31-q33 but no specific mutation has been identified.

Only one family has been reported and additional information is needed to document the uniqueness of this disorder.

Other autosomal dominant congenital nystagmus conditions in this database are: NYS2, NYS3, and NYS7.

Three X-linked isolated congenital nystagmus conditions may also be found in this database: NYS1, NYS5, and NYS6.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported.  Low vision aids might be helpful for school-age children.

References
Article Title: 

Pages

Subscribe to RSS - autosomal dominant?