visual field constriction

Night Blindness, Congenital Stationary, CSNB1H

Clinical Characteristics
Ocular Features: 

Night blindness is a feature of many pigmentary and other retinal disorders, most of which are progressive.  However, there is also a group of genetically heterogeneous disorders, with generally stable scotopic defects and without RPE changes, known as congenital stationary night blindness (CSNB).  At least 10 mutant genes are responsible with phenotypes so similar that genotyping is usually necessary to distinguish them.  All are caused by defects in visual signal transduction within rod photoreceptors or in defective photoreceptor-to-bipolar cell signaling with common ERG findings of reduced or absent b-waves and generally normal a-waves.  However, the photopic ERG can be abnormal to some degree as well and visual acuity may be subnormal.  In the pregenomic era, subtleties of ERG responses were frequently used in an attempt to distinguish different forms of CSNB.  Genotyping now enables classification with unprecedented precision.

Night blindness in this condition can be detected in early childhood and may be congenital.   Photophobia, reduced cone sensitivity. and mild dyschromatopsia may develop in midlife.  Peripheral field constriction can be demonstrated.  Visual acuity is near normal and there is no nystagmus or high myopia as reported for some other forms of CSNB.   

Systemic Features: 

There are no systemic abnormalities.

Genetics

This is an autosomal recessive disorder resulting from homozygous or compound heterozygous mutations in the GNB3 gene (12p13.31).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment has been reported but the use of tinted lenses can enhance contrast and improve acuity.

References
Article Title: 

Retinal Dystrophy, Newfoundland Type

Clinical Characteristics
Ocular Features: 

There is considerable clinical heterogeneity, mostly age-dependent.  Night blindness can occur in early childhood but usually later even though scotopic responses can be undetectable in the first decade of life while photopic responses are reduced on the ERG at all ages.  Both rod and cone responses may be extinguished in later life.  Visual acuity can be decreased beginning in early childhood and legal blindness usually occurs by the second or third decade of life.  However, the loss of vision continues to progress and severe vision loss to finger-counting may be present in older individuals.  A scallop-bordered lacunar atrophy may be seen in the midperiphery.  The macula is only mildly involved by clinical examination although central retinal thinning is seen in all cases.  Dyschromatopsia is mild early and usually becomes more severe.  The visual fields are moderately to severely constricted although in younger individuals a typical ring scotoma is present.  The peripheral retina contains ‘white dots’ and often resembles the retinal changes seen in retinitis punctate albescens.

Systemic Features: 

None reported.

Genetics

Homozygous mutations in the RLBP1 gene (15q26.1) are responsible for this disorder.  Homozygous mutations in RLBP1 have also been found among patients with fundus albipunctatus (136880), retinitis punctata albescens, and in Bothnia type retinal dystrophy (607475),

NFRCD clinically resembles Bothnia type retinal dystrophy (607475) which likewise results from mutations in the RLBP1 gene but the maculae appear normal or have only a mild ‘beaten-bronze’ atrophy.

See Flecked Retina entry for somewhat similar conditions.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Retinitis Pigmentosa 1

Clinical Characteristics
Ocular Features: 

Night blindness, the predominant presenting symptom, is often noted in the first decade of life but may not be a significant complaint until the third decade.  Concentric peripheral field loss likewise follows a similar timeline.  ERG responses progressively decrease in amplitude and may become undetectable in the second decade.  The retinal disease progresses relentlessly, albeit slowly, as the result of photoreceptor degeneration and most patients have severe visual handicaps by midlife but there is considerable clinical variation.  The pigmentary retinopathy is typical for classical retinitis pigmentosa with vascular attenuation, perivascular bone-spicule pigment clumping, optic atrophy, and generalized retinal atrophy with relative sparing of the macula early in the disease.  Lens opacities are common in late stages of the disease.

Systemic Features: 

No systemic disease is associated with the ocular disorder caused by mutations in RP1.

Genetics

Multiple heterozygous, homozygous, and compound heterozygous mutations in the RP1 gene (8q12.1), sometimes called the oxygen-regulated photoreceptor protein 1 or ORP1 gene, are responsible for this disorder.  The protein product is active specifically in retinal photoreceptors.  Retinitis pigmentosa 1 is generally considered to be an autosomal dominant disorder and accounts for 5-7% of dominantly inherited RP disease.  However, recent reports suggest that some mutations in RP1 are responsible for familial cases transmitted in an autosomal recessive pattern in which the clinical disease is more severe. 

More than 20 different mutant genes have been associated with autosomal dominant RP but many cases lack a family history suggesting additional genetic heterogeneity remains.  Reduced penetrance and variable expressivity characteristic of genetic disease likely contributes to the clinical heterogeneity as well.  For more about autosomal dominant retinitis pigmentosa, see Retinitis Pigmentosa, AD (180380, 268000).  

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

Photoreceptor transplantation has been tried in a number of patients without improvement in central vision or interruption in the rate of vision loss.  Longer term results are needed.  Resensitizing photoreceptors with halorhodopsin using archaebacterial vectors shows promise in mice.  High doses of vitamin A palmitate slow the rate of vision loss but plasma levels and liver function need to be checked at least annually.  Oral acetazolamide can be helpful in reducing macular edema.

Low vision aids and mobility training can be facilitating for many patients.  Cataract surgery may restore several lines of vision at least temporarily.

Several pharmaceuticals should be avoided, including isotretinoin, sildenafil, and vitamin E.

References
Article Title: 

Pigmented Paravenous Chorioretinal Atrophy

Clinical Characteristics
Ocular Features: 

This is a rare type of pigmentary retinopathy with few symptoms in many patients.  Pigment clumps in the form of bone spicules in a paravenous distribution appear as young as 1 year of age and may be present congenitally.  The pigment may begin peripherally and is often segmental but eventually progresses centrally along with chorioretinal atrophy involving the majority of the fundus.  For unknown reasons, males are more severely affected than females.  In one family the retinal changes were associated with hyperopia, esotropia and vitreous degeneration (cells and liquefaction).  There is considerable variation in expressivity among patients and the vision and fundus pigmentation can be highly asymmetrical in the two eyes.  ERG abnormalities likewise vary widely with decreased photopic responses in some individuals and complete lack of both scotopic and photopic responses in severely affected eyes.  Decreased night vision is not a symptom.

This is generally considered to be a stationary condition but long term follow up reveals progression of pigmentary changes, chorioretinal atrophy and increasing constriction of the peripheral visual field.  Symptoms of decreased vision may be noted as early as 3 months of age.  Some patients retain vision of 20/20 or 20/30 into midlife whereas others in the first decade already have count fingers vision.  Likewise the size of the visual field varies widely and is not correlated with age.

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

This is an autosomal dominant disorder caused by heterozygous mutations in the crumbs homolog 1 (CRB1) gene (1q31.3).

CRB1 mutations have been identified in other retinal disorders including nanophthalmos with retinitis pigmentosa, pigmented paravenous chorioretinal atrophy (172870), retinitis pigmentosa-12 (600105), and Leber congenital amaurosis 8 (613835).  No consistent retinal phenotype has been found, however.  There is often marked asymmetry between the two eyes and the rate of visual loss varies widely.  Most individuals have some patchy areas of hypoautofluorescence in the posterior pole with variable amounts of pigmentary anomalies from mild speckling to frank bone spicule formation.

   

 

   

 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No effective treatment is available although low vision aids are likely to be helpful in selected patients.

References
Article Title: 

Optic Atrophy 7

Clinical Characteristics
Ocular Features: 

This is an early onset (4 to 6 years of age) optic atrophy in which acuity even at that age may be only 20/200.  Peripheral field constriction occurs late in contrast to its preservation in another autosomal recessive form of early onset optic atrophy, OPA6 (258500).  Atrophy of the optic nerve and loss of vision also occurs more slowly in the latter.

Systemic Features: 

Several individuals have had systemic disease consisting of hypertrophic cardiomyopathy, MRI changes in the brain, and mild hearing loss but these may have been coincidental.

Genetics

This is an autosomal recessive disorder resulting from a mutation in the TMEM126A gene (11q14.1-q21) encoding a mitochondrial protein.

A less severe form of autosomal recessive optic atrophy (OPA6; 258500) has been reported.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment is available but low vision aids can be helpful in activities of daily living.

References
Article Title: 

Nanophthalmos Plus Syndrome

Clinical Characteristics
Ocular Features: 

This is a recently described type of nanophthalmos with characteristic clinical features plus retinal degeneration and optic disc drusen.  Hyperopia is common and, like another recessive form of nanophthalmos (267760), patients have a progressive retinal dystrophy beginning with granular and mottled RPE changes and progressing to a bone spicule pattern resembling retinitis pigmentosa.  No synechiae have been reported in this syndrome however.  Macular retinoschisis and cystic changes with reduced foveal reflexes are commonly present.  The anterior chamber and angles are narrow but no reported cases have had angle closure glaucoma such as frequently occurs in other forms of nanophthalmos (267760, 609549, 600165, 611897).  Drusen of the optic nerve head can be demonstrated by ultrasound.  Scleral and choroidal thickening are usually present.  There is progressive deterioration of photoreceptors beginning with rod dysfunction and eventually involving cones as documented on ERG recordings.  Nyctalopia and visual difficulties begin in childhood and the visual field is concentrically constricted.  Visual acuity is in the range of 20/100 to 20/200.

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

This is an autosomal recessive disorder caused by mutations in the membrane frizzled-related protein coding gene MFRP (11q23) expressed in retinal tissue.  Both homozygous and compound heterozygous mutations have been described.  It seems to be allelic to another nanophthalmos condition without retinal pigmentary degeneration which is caused by different mutations in MFRP (NNO2 609549).  However, there is considerable clinical overlap of the several nanophthalmos conditions and it is possible that this is simply clinical heterogeneity within the same disease.

A syndromic form (MCOP5) of autosomal recessive microphthalmia with retinitis pigmentosa (611040) is also caused by mutations in MFRP and may be the same disorder.

For other forms of nanophthalmos see:  267760, 609549, 600165, 611897.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Angle closure glaucoma is a constant threat in some nanophthalmic conditions but has not been reported in this disorder.  Nevertheless, it may be prudent to consider prophylactic iridotomies in high risk cases.

References
Article Title: 

Goldmann-Favre Syndrome/ESCS

Clinical Characteristics
Ocular Features: 

Enhanced S-cone syndrome, sometimes called Goldman-Favre syndrome, is a retinal disorder characterized by increased sensitivity to blue light, night blindness from an early age, and decreased vision.  Additional features include an optically empty liquefied vitreous, progressive foveal or peripheral retinoschisis, macular cysts, chorioretinal atrophy and pigmentary retinopathy as well as posterior subcapsular cataract formation.  Hyperopia is a feature, at least in childhood.   Enhanced S-cone syndrome is the only retinal disorder that has a gain of a subtype of photoreceptors, in this case the S-cones (short wave length) that detect blue light. Rod photoreceptors and red and green cone receptors are degenerated to a variable degree. Electroretinography shows an extinct rod photoreceptor response and hypersensitivity to shorter wavelengths.

There is considerable variation in the clinical features of NR2E3 mutations which has led to some confusion in the nosology.  Some cases are called juvenile retinoschisis, others are called retinitis pigmentosa, or clumped pigment retinopathy.  Central acuity ranges from near normal (20/40) in young people to 20/200 or worse especially in older adults.  Visual field constriction likewise varies from patient to patient.  Retinal pigmentary changes and the amount of cystic changes in the macula are somewhat age dependent.

Systemic Features: 

No general systemic manifestations are associated with enhanced S-cone syndrome and Goldman-Favre syndrome.

Genetics

This is an autosomal recessive retinal disorder caused by mutations in NR2E3, also known as PNR, located on chromosome 15q23.  It is a part of a transcription factor complex necessary for the development of photoreceptors.  Mutations in NR2E3 cause degeneration of rod photoreceptors and an increased number of S-cone photoreceptors resulting in an increased ratio of blue to red-green cone photoreceptors. Mutations in the NR2E3 gene can also cause a clinical picture resembling simple autosomal recessive retinitis pigmentosa.

Two brothers with an enhanced S-cone phenotype and normal rod function have been reported.  Scotopic b-wave ERG amplitudes were normal but OCT showed flattening of the macular area and thinning of the photoreceptor layer.  This may be the result of a different mutation in this family but no molecular defect was found.

Several Moroccan families have been reported with homozygous or compound heterozygous mutations in the NRL gene (162080).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is presently no effective treatment for the disorder, but visual function can be improved with low vision aids. Cataract surgery may be beneficial.

Improvement in vision has been reported with the use of topical carbonic anhydrase inhibitors.

References
Article Title: 

Expanded Clinical Spectrum of Enhanced S-Cone Syndrome

Yzer S, Barbazetto I, Allikmets R, van Schooneveld MJ, Bergen A, Tsang SH, Jacobson SG, Yannuzzi LA. Expanded Clinical Spectrum of Enhanced S-Cone Syndrome. JAMA Ophthalmol. 2013 Aug 29.  [Epub ahead of print] PubMed PMID: 23989059.

PubMed ID: 
23989059

Phenotypic variation in enhanced S-cone syndrome

Audo I, Michaelides M, Robson AG, Hawlina M, Vaclavik V, Sandbach JM, Neveu MM, Hogg CR, Hunt DM, Moore AT, Bird AC, Webster AR, Holder GE. Phenotypic variation in enhanced S-cone syndrome. Invest Ophthalmol Vis Sci. 2008 May;49(5):2082-93.

PubMed ID: 
18436841
Subscribe to RSS - visual field constriction