upslanting lid fissures

Mental Retardation, AD 57

Clinical Characteristics
Ocular Features: 

Ptosis, strabismus, epicanthal folds, and upslanting lid fissures are often present but there is considerable variation among individuals.  Blepharophimosis, telecanthus, and various refractive errors have also been reported.

Systemic Features: 

There is great variability in the clinical signs among patients.  Most have developmental delays and intellectual disabilities combined with behavioral challenges such as anxiety, obsessive-compulsive disorders and features of autism spectrum disorders.  

Infants and young children may have feeding difficulties but may later develop constipation or diarrhea.  

Skeletal anomalies such as short stature, high palate, craniosynostosis, scoliosis, pes planus, hand contractures, and joint hypermobility have been reported.  The voice may be hoarse.

Genetics

Heterozygous mutations in the TLK2 gene (17q23) are responsible for this condition.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

De Novo and Inherited Loss-of-Function Variants in TLK2: Clinical and Genotype-Phenotype Evaluation of a Distinct Neurodevelopmental Disorder

Reijnders MRF, Miller KA, Alvi M, Goos JAC, Lees MM, de Burca A, Henderson A, Kraus A, Mikat B, de Vries BBA, Isidor B, Kerr B, Marcelis C, Schluth-Bolard C, Deshpande C, Ruivenkamp CAL, Wieczorek D; Deciphering Developmental Disorders Study, Baralle D, Blair EM, Engels H, Ludecke HJ, Eason J, Santen GWE, Clayton-Smith J, Chandler K, Tatton-Brown K, Payne K, Helbig K, Radtke K, Nugent KM, Cremer K, Strom TM, Bird LM, Sinnema M, Bitner-Glindzicz M, van Dooren MF, Alders M, Koopmans M, Brick L, Kozenko M, Harline ML, Klaassens M, Steinraths M, Cooper NS, Edery P, Yap P, Terhal PA, van der Spek PJ, Lakeman P, Taylor RL, Littlejohn RO, Pfundt R, Mercimek-Andrews S, Stegmann APA, Kant SG, McLean S, Joss S, Swagemakers SMA, Douzgou S, Wall SA, Kury S, Calpena E, Koelling N, McGowan SJ, Twigg SRF, Mathijssen IMJ, Nellaker C, Brunner HG, Wilkie AOM. De Novo and Inherited Loss-of-Function Variants in TLK2: Clinical and Genotype-Phenotype Evaluation of a Distinct Neurodevelopmental Disorder. Am J Hum Genet. 2018 Jun 7;102(6):1195-1203.

PubMed ID: 
29861108

Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability

Lelieveld SH, Reijnders MR, Pfundt R, Yntema HG, Kamsteeg EJ, de Vries P, de Vries BB, Willemsen MH, Kleefstra T, Lohner K, Vreeburg M, Stevens SJ, van der Burgt I, Bongers EM, Stegmann AP, Rump P, Rinne T, Nelen MR, Veltman JA, Vissers LE, Brunner HG, Gilissen C. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat Neurosci. 2016 Sep;19(9):1194-6.

PubMed ID: 
27479843

Mental Retardation, AD 31

Clinical Characteristics
Ocular Features: 

A variety of ocular dysmorphisms have been described in this disorder including up-slanting lid fissures, epicanthal folds, hypertelorism, and telecanthus.  Ptosis was described in 1 patient.  Strabismus, nystagmus, and disconjugate gaze have been observed.  Visual acuity has not been reported but "variable visual impairment" has been described.  One patient was considered to have cortical visual impairment.

Systemic Features: 

Neonatal hypotonia and feeding difficulties are among the first signs along with seizure-like activity (50%) including infantile spasms.  EEG anomalies are present in the majority of individuals.  Gastroscopy tubes may be required in a significant minority of patients.  Hypotonic or myopathic facies is common.  Apneic episodes may be seen in the neonatal period and most infants have respiratory difficulties in the first year of life which may improve during this period.  Learning difficulties and features of autism are common.  Some patients are unable to walk while others have an ataxic or broad-based gait.  Speech may be absent or severely limited.  The forehead is prominent while the hard palate is usually highly vaulted.

Brain MRIs may show delayed myelination but such scans have been described as normal in other individuals.  Enlarged ventricles, a thin corpus callosum, and periventricular white matter changes may also be present.   Neuropathologic studies have revealed chronic inflammatory changes around the arterioles of deep while matter.

Genetics

Heterozygous mutations in the PURA gene (5q31) have been identified in this disorder.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Expanding the neurodevelopmental phenotype of PURA syndrome

Lee BH, Reijnders MRF, Abubakare O, Tuttle E, Lape B, Minks KQ, Stodgell C, Bennetto L, Kwon J, Fong CT, Gripp KW, Marsh ED, Smith WE, Huq AM, Coury SA, Tan WH, Solis O, Mehta RI, Leventer RJ, Baralle D, Hunt D, Paciorkowski AR. Expanding the neurodevelopmental phenotype of PURA syndrome. Am J Med Genet A. 2018 Jan;176(1):56-67.

PubMed ID: 
29150892

De novo mutations in PURA are associated with hypotonia and developmental delay

Tanaka AJ, Bai R, Cho MT, Anyane-Yeboa K, Ahimaz P, Wilson AL, Kendall F, Hay B, Moss T, Nardini M, Bauer M, Retterer K, Juusola J, Chung WK. De novo mutations in PURA are associated with hypotonia and developmental delay. Cold Spring Harb Mol Case Stud. 2015 Oct;1(1):a000356. doi: 10.1101/mcs.a000356.

PubMed ID: 
27148565

Mutations in PURA cause profound neonatal hypotonia, seizures, and encephalopathy in 5q31.3 microdeletion syndrome

Lalani SR, Zhang J, Schaaf CP, Brown CW, Magoulas P, Tsai AC, El-Gharbawy A, Wierenga KJ, Bartholomew D, Fong CT, Barbaro-Dieber T, Kukolich MK, Burrage LC, Austin E, Keller K, Pastore M, Fernandez F, Lotze T, Wilfong A, Purcarin G, Zhu W, Craigen WJ, McGuire M, Jain M, Cooney E, Azamian M, Bainbridge MN, Muzny DM, Boerwinkle E, Person RE, Niu Z, Eng CM, Lupski JR, Gibbs RA, Beaudet AL, Yang Y, Wang MC, Xia F. Mutations in PURA cause profound neonatal hypotonia, seizures, and encephalopathy in 5q31.3 microdeletion syndrome. Am J Hum Genet. 2014 Nov 6;95(5):579-83.

PubMed ID: 
25439098

Pontocerebellar Hypoplasia 7

Clinical Characteristics
Ocular Features: 

The ocular phenotype has not been fully evaluated.  Optic atrophy, nystagmus, and strabismus have been reported in addition to dysmorphic periocular features such as epicanthal folds, upslanting lid fissures, and a flattened nasal bridge.  Infants frequently do not fix and follow.

Systemic Features: 

Infants may be small at birth and subsequent psychomotor development is delayed.  The ears are large and the palate is highly arched.  Hypotonia is present from birth but spasticity with hyperreflexia may also be seen.  Brain imaging may show a thin corpus callosum as well as olivopontocerebellar hypoplasia.  The ventricles are frequently enlarged.  Patients are frequently irritable with few spontaneous movements.

Genitalia can be ambiguous and are frequently assigned to the female gender because of microphallus, fused scrotum, absent testes, and absence of the uterus.  Many such infants are found to have XY karyotypes.  Infants considered male at birth may subsequently show regression of penile corporeal tissue and may have genitalia that more closely resemble the female gender.  Pelvic imaging and laparoscopy, however, may reveal a uterus, Fallopian tubes and a blind-ending vagina with no gonadal tissue even in individuals with XY karyotypes. 

Genetics

Homozygous or compound heterozygous mutations in the TOE1 gene (1p34.1) are responsible for this condition.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing

Lardelli RM, Schaffer AE, Eggens VR, Zaki MS, Grainger S, Sathe S, Van Nostrand EL, Schlachetzki Z, Rosti B, Akizu N, Scott E, Silhavy JL, Heckman LD, Rosti RO, Dikoglu E, Gregor A, Guemez-Gamboa A, Musaev D, Mande R, Widjaja A, Shaw TL, Markmiller S, Marin-Valencia I, Davies JH, de Meirleir L, Kayserili H, Altunoglu U, Freckmann ML, Warwick L, Chitayat D, Blaser S, Caglayan AO, Bilguvar K, Per H, Fagerberg C, Christesen HT, Kibaek M, Aldinger KA, Manchester D, Matsumoto N, Muramatsu K, Saitsu H, Shiina M, Ogata K, Foulds N, Dobyns WB, Chi NC, Traver D, Spaccini L, Bova SM, Gabriel SB, Gunel M, Valente EM, Nassogne MC, Bennett EJ, Yeo GW, Baas F, Lykke-Andersen J, Gleeson JG. Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nat Genet. 2017 Mar;49(3):457-464.

PubMed ID: 
28092684

Encephalopathy, Early-Onset, With Brain Atrophy and Thin Corpus Callosum

Clinical Characteristics
Ocular Features: 

Optic atrophy is present in many patients and may be present early since lack of visual tracking or eye contact may be noted at birth.  Sparse eyebrows, upslanting palpebral fissures, and hypertelorism have also been reported.

Systemic Features: 

Severe hypotonia is present at birth often causing respiratory distress in the neonate.  Spasticity can develop later.  Growth failure with progressive microcephaly is present in infants.  Brain imaging often reveals diffuse atrophy of structures including the cerebellum, brainstem, spinal cord, and cerebrum.  Tongue fasciculations have been observed.   Micrognathia and widely spaced teeth are sometimes present.  Several patients have died during infancy.

Genetics

Homozygous mutations in the TBCD (17q25.3) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy

Flex E, Niceta M, Cecchetti S, Thiffault I, Au MG, Capuano A, Piermarini E, Ivanova AA, Francis JW, Chillemi G, Chandramouli B, Carpentieri G, Haaxma CA, Ciolfi A, Pizzi S, Douglas GV, Levine K, Sferra A, Dentici ML, Pfundt RR, Le Pichon JB, Farrow E, Baas F, Piemonte F, Dallapiccola B, Graham JM Jr, Saunders CJ, Bertini E, Kahn RA, Koolen DA, Tartaglia M. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy. Am J Hum Genet. 2016 Oct 6;99(4):962-973.

PubMed ID: 
27666370

Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy

Miyake N, Fukai R, Ohba C, Chihara T, Miura M, Shimizu H, Kakita A, Imagawa E, Shiina M, Ogata K, Okuno-Yuguchi J, Fueki N, Ogiso Y, Suzumura H, Watabe Y, Imataka G, Leong HY, Fattal-Valevski A, Kramer U, Miyatake S, Kato M, Okamoto N, Sato Y, Mitsuhashi S, Nishino I, Kaneko N, Nishiyama A, Tamura T, Mizuguchi T, Nakashima M, Tanaka F, Saitsu H, Matsumoto N. Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy. Am J Hum Genet. 2016 Oct 6;99(4):950-961.

PubMed ID: 
27666374

Retinal Dystrophy, Cataracts, and Short Stature

Clinical Characteristics
Ocular Features: 

Patients develop progressive night vision problems in the first decade of life.  However, central acuity remains in the 20/20 to 20/30 range at least through the second decade.  Cataracts are noted during this time period as well.  Visual field constriction is present.

Pigmentary retinopathy is present, especially in the posterior poles.  Macular mottling is evident at an early age with attenuation and narrowing of the retinal arterioles.  The pigmentary changes are salt-and-pepper in appearance but there are also areas of RPE atrophy with relative sparing of the fovea.  Pigment clumping in the shape of bone spicules has been observed in the periphery.  Full field ERGs show generalized rod-cone dysfunction with scotopic function more affected.  OCT examination reveals a disruption of the outer retinal layers from the parafoveal region into the periphery.

Systemic Features: 

Early childhood psychomotor delays are evident in early childhood by the lack of fine motor and coordination skills along with learning difficulties.  Patients have facial dysmorphism with hypoplasia of the ala nasae, upslanting palpebral fissures, and malar hypoplasia.  The teeth are widely spaced and there is malocclusion.  Short stature is characteristic (fifth percentile).

Genetics

This disorder results from homozygosity of mutations in the RDH11 gene (14q24) encoding retinol dehydrogenase 11.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for this condition but patients may benefit from correction of the malocclusion, special education classes, cataract removal, and low vision aids.  Physical therapy may also be helpful.

References
Article Title: 
Subscribe to RSS - upslanting lid fissures