rod-cone dystrophy

Retinitis Pigmentosa 38

Clinical Characteristics

Ocular Features

This is a rare clinically heterogeneous condition in which both rods and cones functions are variably affected.  It is a progressive disorder with children often being aware of night vision difficulties during the latter half of the first decade of life.  Reduced vision is often present at this time as well and progressively deteriorates.  Visual fields are constricted to 20-30 degrees.  Rod responses may be nondetectable in the first decade.

Central vision is subnormal as early as childhood and progressively worsens with age.  Dyschromatopsia to some degree is often present early as well and some patients have a maculopathy with a bull’s eye pattern and thinning of the photoreceptor layer seen on OCT.  Attenuated retinal vessels, pale optic discs, and variable fundus pigmentary changes (including pigmentary mottling and bone spicules) have been seen.  The degree and course of the photoreceptor damage is variable leading some to propose that RP38 is primarily a cone-rod dystrophy.

Systemic Features

None

Genetics

This is an autosomal recessive disorder resulting from homozygous mutations in the MERTK gene (2q13).

Treatment Options

No treatment has been reported but young people especially could benefit from low vision aids and special education therapy.

References

Ksantini M, Lafont E, Bocquet B, Meunier I, Hamel CP. Homozygous mutation in MERTK causes severe autosomal recessive retinitis pigmentosa. Eur J Ophthalmol. 2012 Jul-Aug;22(4):647-53.

PubMed ID: 
22180149

Mackay DS, Henderson RH, Sergouniotis PI, Li Z, Moradi P, Holder GE, Waseem N, Bhattacharya SS, Aldahmesh MA, Alkuraya FS, Meyer B, Webster AR, Moore AT. Novel mutations in MERTK associated with childhood onset rod-cone dystrophy. Mol Vis. 2010 Mar 9;16:369-77.

PubMed ID: 
20300561

Retinitis Pigmentosa, Hearing Loss, Ataxia, Cataract, and Polyneuropathy

Clinical Characteristics

Ocular Features

Cataracts and a pigmentary retinopathy occur in this condition but only in some, primarily older, patients.  The lens opacities progress and may become visually significant by the third decade.  Bone-spicule-shaped pigment clumping may be present in the midperiphery while the optic disk is often pale and the retinal vessels are attenuated. The ERG responses are consistent with a rod-cone dystrophy.

Systemic Features

This is a progressive neurological disorder with onset of signs and symptoms in childhood although full expression may not occur until adulthood.  Young children can have hyporeflexia, pes cavus, spasticity, and gait ataxia.  A sensorineural hearing loss may also be present in childhood but sometimes not until later.  Hyperreflexia with extensor plantar responses and Achilles tendon contractures are often present later.  The peripheral polyneuropathy is predominantly demyelinating with both sensory and motor components and is present in all adults.  Cerebellar atrophy, primarily in the vermis, can be demonstrated on MRI examination.  Mental function is usually not impaired. Some patients have dysarthria. 

This disorder has some clinical similarities to Refsum disease (266500).

Genetics

This is an autosomal recessive disorder resulting from homozygous mutations in the ABHD12 gene (20p11.21).

Treatment Options

Treatment is directed at symptoms.  Visually significant cataracts may require removal.  Low vision aids and physical therapy can be helpful.

References

Fiskerstrand T, H'mida-Ben Brahim D, Johansson S, M'zahem A, Haukanes BI, Drouot N, Zimmermann J, Cole AJ, Vedeler C, Bredrup C, Assoum M, Tazir M, Klockgether T, Hamri A, Steen VM, Boman H, Bindoff LA, Koenig M, Knappskog PM. Mutations in ABHD12 cause the neurodegenerative disease PHARC: An inborn error of endocannabinoid metabolism. Am J Hum Genet. 2010 Sep 10;87(3):410-7.

PubMed ID: 
20797687

Fiskerstrand T, Knappskog P, Majewski J, Wanders RJ, Boman H, Bindoff LA. A novel Refsum-like disorder that maps to chromosome 20. Neurology. 2009 Jan 6;72(1):20-7.

PubMed ID: 
19005174

Retinal Dystrophy, Bothnia Type

Clinical Characteristics

Ocular Features

Night blindness occurs from early childhood when the fundus still appears normal.  However, rod responses may be absent from ERG recordings even in the first decade and this is followed by loss of cone responses in older individuals. Rod responses can recover after prolonged dark adaptation but cone function does not recover.  Multifocal ERGs can detect early deterioration of the macula while vision and the appearance of the macula are still normal.

Pigment deposition can sometimes be seen in the retina and the retinal blood vessels may be attenuated.  In young adults the fundus may have the appearance of retinitis albescens but eventually changes resembling central areolar atrophy develop in the macula.  Retinal thinning in the fovea and parafoveal areas has been described.  Progressive loss of vision leads to legal blindness in early adulthood.  The peripheral retina undergoes degenerative changes as well.

Systemic Features

No extraocular abnormalities have been reported.

Genetics

Homozygous mutations in the RLBP1 gene (15q26.1) have been identified in patients with Bothnia retinal dystrophy.  The protein product is essential to the proper function of both rod and cone photoreceptors.  When defective the normal cycling of retinoids between RPE cells and photoreceptors is disrupted, thereby negatively impacting what is sometimes called the 'visual cycle'. 

This rod-cone dystrophy has a high prevalence in northern Sweden.

Homozygous mutations in RLBP1 have also been found among patients in fundus albipunctatus (136880) and retinitis punctata albescens.

Treatment Options

None has been reported. Tinted lenses can be helpful.

References

Burstedt M, Jonsson F, Köhn L, Burstedt M, Kivitalo M, Golovleva I. Genotype-phenotype correlations in Bothnia dystrophy caused by RLBP1 gene sequence variations. Acta Ophthalmol. 2012 May 2. doi: 10.1111/j.1755-3768.2012.02431.x. [Epub ahead of print]

PubMed ID: 
22551409

Gränse L, Abrahamson M, Ponjavic V, Andréasson S. Electrophysiological findings in two young patients with Bothnia dystrophy and a mutation in the RLBP1 gene. Ophthalmic Genet. 2001 Jun;22(2):97-105

PubMed ID: 
11449319

Burstedt MS, Forsman-Semb K, Golovleva I, Janunger T, Wachtmeister L, Sandgren O. Ocular phenotype of bothnia dystrophy, an autosomal recessive retinitis pigmentosa associated with an R234W mutation in the RLBP1 gene. Arch Ophthalmol. 2001 Feb;119(2):260-7.

PubMed ID: 
11176989

Optic Nerve Edema, Splenomegaly, Cytopenias

Clinical Characteristics

Ocular Features

Persistent optic nerve edema is eventually followed by some degree of optic atrophy.  The nerve edema may be seen early in the first decade of life and is not associated with increased lumbar puncture pressure.  Peripapillary hemorrhages may be seen.  Visual acuity may decrease somewhat by the end of the first decade of life and becomes functionally significant in early adolescence and may be reduced to counting fingers.  The ERG, which shows minimal dysfunction early, eventually appears nearly flat without photopic or scotopic responses.  The retinal vessels become markedly attenuated and the macula may be mildly edematous and show pigmentary changes.  Pigment clumping is not seen.  Visual fields show a central or cecocentral scotoma, enlargement of the blind spot, and eventually severe peripheral constriction.  The vitreous and aqueous humor sometimes have an increased number of cells.   Lenticular opacities requiring cataract surgery has been reported.  One patient developed a phacomorphic angle closure attack at the age of 19 years.

Systemic Features

Splenomegaly is a consistent sign and is usually present in the first decade of life but histology shows primarily cellular congestion of the red pulp cords.  Bone marrow biopsies show mild erythroid hyperplasia. Peripheral blood counts show mild neutropenia and thrombocytopenia.  Occasional atypical lymphocytes may be seen.  Patients often complain of mildly to moderately severe migraine headaches.  Urticaria and anhidrosis are common features.

Genetics

Only a single report of this condition has been published.  A mother and two daughters (half sisters) had the symptoms described here and this is the basis for consideration of autosomal dominant inheritance.  Nothing is known regarding the etiology or the mechanism of disease.

Treatment Options

Topical, intravitreal, oral, and subtenon application of steroids apparently have no impact on the progression of the intraocular disease.  Cataracts may need to be removed.

References

Tantravahi SK, Williams LB, Digre KB, Creel DJ, Smock KJ, Deangelis MM, Clayton FC, Vitale AT, Rodgers GM. An inherited disorder with splenomegaly, cytopenias, and vision loss. Am J Med Genet A. 2012 Mar;158A(3):475-81. doi: 10.1002/ajmg.a.34437. Epub 2012 Feb 3.

PubMed ID: 
22307799

Spinocerebellar Ataxia 1

Clinical Characteristics

Ocular Features

Early manifestations include gaze-evoked nystagmus and saccadic hypermetria.  Ophthalmoplegia develops later in the disease process.  Some patients experience a decrease in acuity and dyschromatopsia.  The ERG shows evidence of generalized rod and cone photoreceptor dysfunction in some patients.  Optic atrophy, central scotomas, central RPE changes, retinal arteriolar attenuation, and blepharospasm have also been reported.

Time-domain OCT has revealed microscopic changes in the macula with thinning of the inner-outer segment junction and nuclear layer in areas with RPE hypopigmentation. 

Systemic Features

This is a progressive cerebellar syndrome characterized by systems of ataxia, dysarthria, and bulbar palsy.  Speech is often scanning and explosive.  DTRs can be exaggerated, and dysmetria is common.  The mean age of onset is about age 40.  Some cognitive decline may occur.  Muscle atrophy, and symptoms of peripheral neuropathy can be present.  MRI shows atrophy in the cerebellum, spinal cord, and brainstem.  There is considerable variation in clinical expression.  Individuals with adult onset of symptoms can survive for 10-30 years whereas those with a juvenile-onset often do not live beyond the age of 16 years.

Genetics

This disorder is caused by an expanded CAG repeat in the ataxin-1 gene (ATXN1) at 6p23.  It is an autosomal dominant disorder.  Alleles with 39-44 or more CAG repeats are likely to be associated with symptoms. 

A male bias and the phenomenon of anticipation have been demonstrated in this disorder as in spinocerebellar ataxia 7 (SCA7) (164500), in which affected offspring of males with SCA develop disease earlier and symptoms progress more rapidly than in offspring of females.  This is often explained by the fact that males generally transmit a larger number of CAG repeats.

SCA7 (164500), also inherited in an autosomal dominant pattern and caused by expanded CAG repeats on chromosome 3, has many similar ocular and neurologic features.

Treatment Options

Supportive care is often required.          

References

Lebranchu P, Le Meur G, Magot A, David A, Verny C, Weber M, Milea D. Maculopathy and Spinocerebellar Ataxia Type 1: A New Association? J Neuroophthalmol. 2013 Apr 11. [Epub ahead of print]

PubMed ID: 
23584155

Vaclavik V, Borruat FX, Ambresin A, Munier FL. Novel maculopathy in patients with spinocerebellar ataxia type 1 autofluorescence findings and functional characteristics. JAMA Ophthalmol. 2013 Apr 1;131(4):536-8.

PubMed ID: 
23579607

Thurtell MJ, Biousse V, Newman NJ. Rod-cone dystrophy in spinocerebellar ataxia type 1. Arch Ophthalmol. 2011 Jul;129(7):956-8.

PubMed ID: 
21746990

Bürk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, Klockgether T. Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J Neurol. 1999 Sep;246(9):789-97.

PubMed ID: 
10525976

Buttner N, Geschwind D, Jen JC, Perlman S, Pulst SM, Baloh RW. Oculomotor phenotypes in autosomal dominant ataxias. Arch Neurol. 1998 Oct;55(10):1353-7.

PubMed ID: 
9779665

Rivaud-Pechoux S, Dürr A, Gaymard B, Cancel G, Ploner CJ, Agid Y, Brice A, Pierrot-Deseilligny C. Eye movement abnormalities correlate with genotype in autosomal dominant cerebellar ataxia type I. Ann Neurol. 1998 Mar;43(3):297-302. Review.

PubMed ID: 
9506545

Stricker S, Oberwahrenbrock T, Zimmermann H, Schroeter J, Endres M, Brandt AU, Paul F. Temporal retinal nerve fiber loss in patients with spinocerebellar ataxia type 1. PLoS One. 2011;6(7):e23024. Epub 2011 Jul 29.

PubMed ID: 
21829579

Oculoauricular Syndrome

Clinical Characteristics

Ocular Features

This rare malformation syndrome affects primarily the eyes and ears.  The globes are small and usually have colobomas of both anterior and posterior segments.  The corneas likewise are small and often have opacities.  The anterior segment is dysplastic with anterior and/or posterior synechiae.  Glaucoma may be present.  The lenses may be small and often become cataractous.  There is a progressive rod-cone dystrophy associated with a pigmentary retinopathy.  Chorioretinal lacunae have been seen in the equatorial region.  The retinal degeneration is progressive, beginning with rod dysfunction but followed by deterioration of all receptors.  The onset in early childhood results in poor vision and nystagmus. 

Systemic Features

The external ears are abnormal.  The earlobes may have colobomas or may be aplastic.  The intertragic notch is often underdeveloped.  Audiograms and vestibular function tests, however, show normal function and MRI of the middle and inner ears likewise reveals no anatomic abnormalities.       

Among the few patients reported, dental anomalies, spina bifida oculta, and mild dyscrania have been noted in individual patients.

Genetics

The disorder so far has only been reported in Switzerland in a single family.  Based on parental consanguinity and homozygosity of a 26-bp deletion in the HMX1 gene (4p16.1) in affected sibs, this is a presumed autosomal recessive disorder.  The parents are heterozygous for the deletion.

HMX1 is a homeobox gene and the deletion abolishes its function by establishing a stop codon at position 112.

Treatment Options

No treatment is available for the extraocular malformations.  Glaucoma treatment and cataract surgery should be considered although permanent visual rehabilitation is unlikely given the progressive nature of the rod-cone dystrophy.

References

Vaclavik V, Schorderet DF, Borruat FX, Munier FL. Retinal Dystrophy In The Oculo-auricular Syndrome Due to HMX1 Mutation. Ophthalmic Genet. 2011 Jun;32(2):114-7.

PubMed ID: 
21417677

Schorderet DF, Nichini O, Boisset G, Polok B, Tiab L, Mayeur H, Raji B, de la Houssaye G, Abitbol MM, Munier FL. Mutation in the human homeobox gene NKX5-3 causes an oculo-auricular syndrome. Am J Hum Genet. 2008 May;82(5):1178-84.

PubMed ID: 
18423520

Warburg Micro Syndrome

Clinical Characteristics

Ocular Features

Microphthalmia with microcornea, lens opacities, small and unresponsive pupils, and optic atrophy are the outstanding ocular features of this syndrome. Some but not all have ERG evidence of rod and cone dysfunction.  The VEP is usually abnormal.  Short palpebral fissures have been described. 

Systemic Features

Patients with the micro syndrome have many somatic and neurologic abnormalities.  Some degree of psychomotor retardation and developmental delays is common.  Both spasticity and hypotonia have been described.  Some patients have seizures.  Facial hypertrichosis, anteverted ears, and a broad nasal bridge are often noted.   There may be absence of the corpus callosum while diffuse cortical and subcortical atrophy and pachygyria may be evident on MRI imaging.  Hypogenitalism in males has been described.  Microcephaly is inconsistently present. 

Genetics

This disorder is caused by homozygous mutations in the RAB3GAP1 gene (2q21.3) and therefore inherited in an autosomal recessive pattern. 

Treatment Options

No effective treatment is available.  Vision remains subnormal even after cataracts are removed. 

References

Morris-Rosendahl DJ, Segel R, Born AP, Conrad C, Loeys B, Brooks SS, Müller L,Zeschnigk C, Botti C, Rabinowitz R, Uyanik G, Crocq MA, Kraus U, Degen I, Faes F. New RAB3GAP1 mutations in patients with Warburg Micro Syndrome from different ethnic backgrounds and a possible founder effect in the Danish. Eur J Hum Genet. 2010 Oct;18(10):1100-6.

PubMed ID: 
20512159

Abdel-Salam GM, Hassan NA, Kayed HF, Aligianis IA. Phenotypic variability in Micro syndrome: report of new cases. Genet Couns. 2007;18(4):423-35.

PubMed ID: 
18286824

Warburg M, Sjö O, Fledelius HC, Pedersen SA. Autosomal recessive microcephaly, microcornea, congenital cataract, mental retardation, optic atrophy, and hypogenitalism. Micro syndrome. Am J Dis Child. 1993 Dec;147(12):1309-12.

PubMed ID: 
8249951

Retinitis Pigmentosa, AR

Clinical Characteristics

Ocular Features

The term retinitis pigmentosa is applied to a large group of disorders with great clinical and genetic heterogeneity.  The ocular disease is characterized by night blindness, field constriction, and pigmentary changes in the retina.  The latter is sometimes described as having a ‘bone corpuscle’ appearance with a perivascular distribution.  A ring scotoma is usually evident.  Age of onset and rate of progression is highly variable, even within families.  The rods are impacted early but cone deterioration with loss of central vision usually follows.  Some patients complain of dyschromatopsia and photophobia.  The ERG generally documents this progression but the mfERG shows wide variations in central cone functioning.  Legal blindness is common by the 5thdecade of life or later.  The course of clinical and ERG changes is more aggressive in the X-linked form than in the autosomal dominant disease.  The final common denominator for all types is first rod and then cone photoreceptor loss through apoptosis.

As many as 50% of patients develop posterior subcapsular cataracts.  The vitreous often contains cells and particulate debris.   Retinal arterioles are often attenuated and the optic nerve may have a waxy pallor, especially late in the disease.  Occasional patients have cysts in the macula.  Some patients experience continuous photopsia. 

Systemic Features

The ‘simple’ or nonsyndromal type of RP described here has no systemic features.  However, the retinopathy is seen in a number of syndromes and, of course, in some infectious diseases as well.  It is more accurate to label the fundus finding as 'pigmentary retinopathy' in such cases.

Genetics

A significant proportion of RP cases occur sporadically, i.e., without a family history.  Mutations in more than 30 genes cause autosomal recessive RP disorders and these account for more than half of all cases of retinitis pigmentosa.  More than 100 mutations have been identified in the RHO gene (3q21-q24) alone.  Mutations in some genes cause RP in both autosomal recessive and autosomal dominant inheritance patterns.  Compound heterozygosity is relatively common in autosomal recessive disease.  See OMIM 268000 for a complete listing of mutations.

Many genes associated with retinitis pigmentosa have also been implicated in other pigmentary retinopathies.  In addition, numerous phenocopies occur, caused by a variety of drugs, trauma, infections and numerous neurological disorders.  To make diagnosis even more difficult, the fundus findings and ERG responses in nonsyndromic RP in most patients are too nonspecific to be useful for classification. Extensive systemic and ocular evaluations are important and should be combined with genotyping in both familial and nonfamilial cases to determine the diagnosis and prognosis. 

Treatment Options

Photoreceptor transplantation has been tried in without improvement in central vision or interruption in the rate of vision loss.  Longer term results are needed.  Resensitizing photoreceptors with halorhodopsin using archaebacterial vectors shows promise in mice.  High doses of vitamin A palmitate slow the rate of vision loss but plasma levels and liver function need to be checked at least annually.  Oral acetazolamide can be helpful in reducing macular edema.

Low vision aids and mobility training can be facilitating for many patients.  Cataract surgery may restore several lines of vision, at least temporarily.

Several pharmaceuticals should be avoided, including isotretinoin, sildenafil, and vitamin E. 

References

Jacobson SG, Cideciyan AV. Treatment possibilities for retinitis pigmentosa. N Engl J Med. 2010 Oct 21;363(17):1669-71.

PubMed ID: 
20961252

Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M, Biel M, Humphries P, Paques M, Mohand-Said S, Trono D, Deisseroth K, Sahel JA, Picaud S, Roska B. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science. 2010 Jul 23;329(5990):413-7.

PubMed ID: 
20576849

Jan√°ky M, P√°lffy A, De√°k A, Szil√°gyi M, Benedek G. Multifocal ERG reveals several patterns of cone degeneration in retinitis pigmentosa with concentric narrowing of the visual field. Invest Ophthalmol Vis Sci. 2007 Jan;48(1):383-9.

PubMed ID: 
17197558

Berger AS, Tezel TH, Del Priore LV, Kaplan HJ. Photoreceptor transplantation in retinitis pigmentosa: short-term follow-up. Ophthalmology. 2003 Feb;110(2):383-91.

PubMed ID: 
12578785

Retinitis Pigmentosa, AD

Clinical Characteristics

Ocular Features

Retinitis pigmentosa is a large group of disorders with great clinical and genetic heterogeneity.  The ocular disease is characterized by night blindness, field constriction, and pigmentary changes in the retina.  The later may have a ‘bone corpuscle’ appearance with a perivascular distribution.  A ring scotoma is sometimes evident.  Age of onset and rate of progression is highly variable, even within families.  The rods are impacted early but cone deterioration with loss of central vision usually follows.  Some patients complain of dyschromatopsia and photophobia.  The ERG generally documents this progression but the mfERG shows wide variations in central cone functioning.  Legal blindness is common by the 5thdecade of life or later.  The course of clinical and ERG changes is more aggressive in the X-linked form than in the autosomal dominant RHO disease.  The final common denominator for all types is first rod and then cone photoreceptor loss through apoptosis.

As many as 50% of patients develop posterior subcapsular cataracts.  The vitreous often contains cells and particulate debris.   Retinal arterioles are often attenuated and the optic nerve may have a waxy pallor, especially late in the disease.  Occasional patients have cysts in the macula.  Some patients experience continuous photopsia.  

Systemic Features

The ‘simple’ or nonsyndromal type of RP described here has no systemic features.  However, the retinopathy is seen in a number of syndromes and, of course, in trauma and in some infectious diseases as well. 

Genetics

A significant proportion of RP cases occur sporadically, i.e., without a family history.  Mutations in more than 20 genes cause autosomal dominant RP disorders and these account for about one-third of all cases of retinitis pigmentosa but there are many more specific mutations.  More than 100 have been identified in the RHO gene (3q21-q24) alone, for example.  Mutations in some genes cause RP in both autosomal recessive and autosomal dominant inhritance patterns.  See OMIM 268000 for a complete listing of mutations.

Many genes associated with retinitis pigmentosa have also been implicated in other pigmentary retinopathies.  In addition numerous phenocopies occur, caused by a variety of drugs, trauma, infections and numerous neurological disorders.  To make diagnosis even more difficult, the fundus findings and ERG responses in nonsyndromic RP in most patients are too nonspecific to be useful for classification. Extensive systemic and ocular evaluations are important and should be combined with genotyping in both familial and nonfamilial cases to determine the diagnosis and prognosis. 

For autosomal dominant retinitis pigmentosa resulting from mutations in RP1, see Retinitis Pigmentosa 1 (180100). 

Treatment Options

Photoreceptor transplantation has been tried in 8 patients without improvement in central vision or interruption in the rate of vision loss.  Longer term results are needed.  Resensitizing photoreceptors with halorhodopsin using archaebacterial vectors shows promise in mice.  High doses of vitamin A palmitate slow the rate of vision loss but plasma levels and liver function need to be checked at least annually.  The use of oral and systemic carbonic anhydrase inhibitors can be helpful in reducing macular edema.

Low vision aids and mobility training can be facilitating for many patients.  Cataract surgery may restore several lines of vision at least temporarily.

Several pharmaceuticals should be avoided, including isotretinoin, sildenafil, and vitamin E. 

References

Jacobson SG, Cideciyan AV. Treatment possibilities for retinitis pigmentosa. N Engl J Med. 2010 Oct 21;363(17):1669-71.

PubMed ID: 
20961252

Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M, Biel M, Humphries P, Paques M, Mohand-Said S, Trono D, Deisseroth K, Sahel JA, Picaud S, Roska B. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science. 2010 Jul 23;329(5990):413-7.

PubMed ID: 
20576849

Jan√°ky M, P√°lffy A, De√°k A, Szil√°gyi M, Benedek G. Multifocal ERG reveals several patterns of cone degeneration in retinitis pigmentosa with concentric narrowing of the visual field. Invest Ophthalmol Vis Sci. 2007 Jan;48(1):383-9.

PubMed ID: 
17197558

Berger AS, Tezel TH, Del Priore LV, Kaplan HJ. Photoreceptor transplantation in retinitis pigmentosa: short-term follow-up. Ophthalmology. 2003 Feb;110(2):383-91.

PubMed ID: 
12578785

Retinitis Pigmentosa 3, X-Linked

Clinical Characteristics

Ocular Features

Retinitis pigmentosa is a large group of disorders with great clinical and genetic heterogeneity.  The ocular disease is characterized by night blindness, field constriction, and pigmentary changes in the retina.  The later may have a ‘bone corpuscle’ appearance with a perivascular distribution.  A ring scotoma is sometimes evident.  Age of onset and rate of progression is highly variable, even within families.  In this, an X-linked form of the disease, the first symptoms often appear early in the second decade of life.  The rods are impacted early but cone deterioration with loss of central vision usually follows.  Some patients complain of dyschromatopsia and photophobia.  The ERG generally documents this progression but the mfERG shows wide variations in central cone functioning.  Legal blindness is common by the 4thor 5thdecades of life.  The course of clinical and ERG changes is more aggressive in the X-linked form than in autosomal dominant retinitis pigmentosa disease resulting from RHO mutations.  The final common denominator for all types is first rod and then cone photoreceptor loss through apoptosis.

Up to 50% of adults develop cataracts beginning in the posterior subcapsular area.  The vitreous often contains cells and some patients have cystoid macular edema.  A waxy pallor of the optic nerve is sometimes present especially in the later stages of the disease.

Female carriers generally are asymptomatic but may also have severe RP.  Occasionally they have an unusual tapetal reflex consisting of a ‘beaten metal’ appearance or sometimes scintillating, golden patches. 

Systemic Features

There is no systemic disease in ‘simple’ or non-syndromic retinitis pigmentosa but pigmentary retinopathy is associated with a number of syndromes (syndromal RP) e.g.,  Usher syndromes, Waardenburg syndrome, Alport syndrome, Refsum disease, Kerns-Sayre syndrome, abetalipoproteinemia, neuronal ceroid lipofuscinosis, mucopolysaccharidoses types I, II, III, and Bardet-Biedl syndromes

The RPGR gene is important to the normal function of cilia throughout the body.  For this reason disorders resulting from RPGR mutations such as CORDX1 (304020) and this one are sometimes classified as primary ciliary dyskinesias or ciliopathies.  The gene products of the RPGR gene, for example, are localized to connecting cilia of the outer segments of rods and cones and in motile cilia in the airway epithelia.  A subset of families with RP3 have chronic and recurrent upper respiratory infections including sinusitis, bronchitis, pulmonary atelectasis, and otitis media (300455) similar to that seen in the immotile cilia syndrome (244400).  Female carriers in these families have few retinal changes but may suffer recurrent and severe upper respiratory infections similar to hemizygous males.  Severe hearing loss also occurs in both sexes with the RPGR mutations and there is some evidence that this may be a primary sensorineural problem, perhaps in addition to conductive loss from recurrent otitis media.

Genetics

Mutations in more than 100 genes may be responsible for retinitis pigmentosa but sporadic disease occurs as well.  Between 5 and 10% of individuals have X-linked disease.  Perhaps 70% of X-linked RP is caused by mutations in RPGR (Xp11.4) as in this condition.  The same gene is mutant in one form of X-linked cone-rod dystrophy (CORDX1; 304020). These  disorders are sometimes considered examples of X-linked ocular disease resulting from a primary ciliary dyskinesia (244400).

Another form of X-linked RP (RP2) with more choroidal involvement is caused by mutations in the RP2 gene (312600 ; Xp11.23). 

Many genes associated with retinitis pigmentosa have also been implicated in other pigmentary retinopathies.  In addition numerous phenocopies occur, caused by a variety of drugs, trauma, infections and numerous neurological disorders.  To make diagnosis even more difficult, the fundus findings and ERG responses in nonsyndromic RP in most patients are too nonspecific to be useful for classification. Extensive systemic and ocular evaluations are important and should be combined with genotyping in both familial and nonfamilial cases to determine the diagnosis and prognosis. 

Treatment Options

Photoreceptor transplantation has been tried in 8 patients without improvement in central vision or interruption in the rate of vision loss.  Longer term results are needed.  Resensitizing photoreceptors with halorhodopsin using archaebacterial vectors shows promise in mice.  High doses of vitamin A palmitate slow the rate of vision loss but plasma levels and liver function need to be checked at least annually.  Oral acetazolamide can be helpful in reducing macular edema.

Low vision aids and mobility training can be facilitating for many patients.  Cataract surgery may restore several lines of vision at least temporarily.

Several pharmaceuticals should be avoided, including isotretinoin, sildenafil, and vitamin E. 

References

Jacobson SG, Cideciyan AV. Treatment possibilities for retinitis pigmentosa. N Engl J Med. 2010 Oct 21;363(17):1669-71.

PubMed ID: 
20961252

Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M, Biel M, Humphries P, Paques M, Mohand-Said S, Trono D, Deisseroth K, Sahel JA, Picaud S, Roska B. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science. 2010 Jul 23;329(5990):413-7.

PubMed ID: 
20576849

Sandberg MA, Rosner B, Weigel-DiFranco C, Dryja TP, Berson EL. Disease course of patients with X-linked retinitis pigmentosa due to RPGR gene mutations. Invest Ophthalmol Vis Sci. 2007 Mar;48(3):1298-304.

PubMed ID: 
17325176

Jan√°ky M, P√°lffy A, De√°k A, Szil√°gyi M, Benedek G. Multifocal ERG reveals several patterns of cone degeneration in retinitis pigmentosa with concentric narrowing of the visual field. Invest Ophthalmol Vis Sci. 2007 Jan;48(1):383-9.

PubMed ID: 
17197558

Berger AS, Tezel TH, Del Priore LV, Kaplan HJ. Photoreceptor transplantation in retinitis pigmentosa: short-term follow-up. Ophthalmology. 2003 Feb;110(2):383-91.

PubMed ID: 
12578785

Zito I, Downes SM, Patel RJ, Cheetham ME, Ebenezer ND, Jenkins SA, Bhattacharya SS, Webster AR, Holder GE, Bird AC, Bamiou DE, Hardcastle AJ. RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections. J Med Genet. 2003 Aug;40(8):609-15.

PubMed ID: 
12920075