preauricular tags

Mandibulofacial Dysostosis with Alopecia

Clinical Characteristics
Ocular Features: 

The extensive dysplasia of the facial bones involves those of the orbital rims and zygomatic arches.  The orbital rims can be malformed and there is often a broad depression at the inferolateral region of the eyes.  Hypoplasia or even aplasia of the eyelids maybe present and some individuals have colobomas of the lower eyelids.  The lacrimal punctae may be temporally displaced.  The eyebrows and eyelashes are often sparse as part of the generalized alopecia.

Systemic Features: 

This is a disorder of craniofacial development resulting in extensive malformations of facial bones and skin.  Different rates of development among these structures leads to facial asymmetry in many patients. Maxillary, zygomatic arch, and mandibular bones are dysplastic resulting in micrognathia and a flat midface.   The temporomandibular joints are absent and the external ear canals are often incompletely formed.  Conductive hearing loss is common with hypoplastic ossicular chains while the pinnae are low-set, crumpled and abnormally cupped.  There may be preauricular tags or pits present.  Tooth eruption is often delayed and there may be agenesis of many permanent teeth.  The maxillary sinuses may be absent.  Cleft palate is often present.

Genetics

Heterozygous mutations in the EDNRA gene (4q31) are responsible for this condition.  No familial cases have been reported and it can be assumed that the mutations arise de novo. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no treatment for the overall condition but individual anomalies such as the colobomas, dental deformities and cleft palate may be surgically repaired.  Upper airway obstruction may require tracheostomy in infants.

References
Article Title: 

Mutations in the endothelin receptor type A cause mandibulofacial dysostosis with alopecia

Gordon CT, Weaver KN, Zechi-Ceide RM, Madsen EC, Tavares AL, Oufadem M, Kurihara Y, Adameyko I, Picard A, Breton S, Pierrot S, Biosse-Duplan M, Voisin N, Masson C, Bole-Feysot C, Nitschke P, Delrue MA, Lacombe D, Guion-Almeida ML, Moura PP, Garib DG, Munnich A, Ernfors P, Hufnagel RB, Hopkin RJ, Kurihara H, Saal HM, Weaver DD, Katsanis N, Lyonnet S, Golzio C, Clouthier DE, Amiel J. Mutations in the endothelin receptor type A cause mandibulofacial dysostosis with alopecia. Am J Hum Genet. 2015 Apr 2;96(4):519-31.

PubMed ID: 
25772936

Kaufman Oculocerebrofacial Syndrome

Clinical Characteristics
Ocular Features: 

Alterations in the morphology of periocular structures is the most consistent ocular feature.  These include epicanthal folds, upward-slanting lid fissures, ptosis, blepharophimosis, sparse eyebrows, and telecanthus.  However, pale optic discs, iris colobomas, microcornea, strabismus, nystagmus, and hypertelorism are variably present. 

Systemic Features: 

There is both intrauterine and postnatal growth retardation.  Hypotonia is often noted along with general psychomotor delays.  Neonatal respiratory distress and laryngeal stridor may be present.  The intellectual disability can be severe.  Corpus callosum aplasia and hypoplasia have been reported.  Microcephaly and brachycephaly with delayed suture closure are features.  The face is long and narrow and the mouth is disproportionally large.  A high arched palate can be present and the pinnae are often deformed, posteriorly rotated and may be accompanied by preauricular skin tags. The teeth appear widely spaced (diastema) and the lower jaw is underdeveloped.

Genetics

Kaufman BPIDS syndrome results from homozygous or compound heterozygous mutations in the UBE3B gene (12q23).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No general treatment is available although repair of some specific malformations is possible.

References
Article Title: 

Deficiency for the ubiquitin ligase UBE3B in a blepharophimosis-ptosis-intellectual-disability syndrome

Basel-Vanagaite L, Dallapiccola B, Ramirez-Solis R, Segref A, Thiele H, Edwards A, Arends MJ, Miro X, White JK, Desir J, Abramowicz M, Dentici ML, Lepri F, Hofmann K, Har-Zahav A, Ryder E, Karp NA, Estabel J, Gerdin AK, Podrini C, Ingham NJ, Altmuller J, Nurnberg G, Frommolt P, Abdelhak S, Pasmanik-Chor M, Konen O, Kelley RI, Shohat M, Nurnberg P, Flint J, Steel KP, Hoppe T, Kubisch C, Adams DJ, Borck G. Deficiency for the ubiquitin ligase UBE3B in a blepharophimosis-ptosis-intellectual-disability syndrome. Am J Hum Genet. 2012 Dec 7;91(6):998-1010.

PubMed ID: 
23200864

An oculocerebrofacial syndrome

Kaufman RL, Rimoin DL, Prensky AL, Sly WS. An oculocerebrofacial syndrome. Birth Defects Orig Artic Ser. 1971 Feb;7(1):135-8.

PubMed ID: 
5006210

Goldenhar Syndrome Spectrum

Clinical Characteristics
Ocular Features: 

There is considerable clinical heterogeneity in this syndrome.  Upper eyelid colobomas and ocular dermoids or lipdermoids are the primary ocular signs (lower lid colobomas are more common in Treacher Collins-Franceschetti syndrome [154500]).  The caruncles may be dysplastic, displaced or even bilobed.  Iris, optic nerve and chorioretinal colobomas also occur.  Microphthalmia is uncommon.  All ocular features are usually unilateral but are bilateral in a minority of cases.

Systemic Features: 

The facial asymmetry (hemifacial microsomia) can be a striking feature.  The side with microsomia may have a malformed external auricle, preauricular tags, pretragal fistulas, and microtia or even atresia of the external auditory canal.  A wide variety of other anomalies are often found including left lip and palate, mandibular hypoplasia, vertebral anomalies, facial nerve paralysis, congenital heart defects, and conductive hearing loss.  Mental deficits are often present along with features of the autism spectrum in 11%.

Genetics

Most cases are sporadic but other family patterns support autosomal recessive and autosomal dominant inheritance with the latter being the most common.  A locus at 14q32 has been associated with OAVS but so far no mutant gene has been identified.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Some patients benefit from scoliosis and cosmetic surgery.  Assistive hearing devices can be helpful and children especially should be monitored for physical and cognitive development.

References
Article Title: 

Oculo-auriculo-vertebral spectrum: clinical and molecular analysis of 51 patients

Beleza-Meireles A, Hart R, Clayton-Smith J, Oliveira R, Reis CF, Venancio M, Ramos F, Sa J, Ramos L, Cunha E, Pires LM, Carreira IM, Scholey R, Wright R, Urquhart JE, Briggs TA, Kerr B, Kingston H, Metcalfe K, Donnai D, Newman WG, Saraiva JM, Tassabehji M. Oculo-auriculo-vertebral spectrum: clinical and molecular analysis of 51 patients. Eur J Med Genet. 2015 Sep;58(9):455-65.

PubMed ID: 
26206081
Subscribe to RSS - preauricular tags