polydactyly

Mental Retardation, X-Linked 99, Syndromic, Female-Restricted

Clinical Characteristics
Ocular Features: 

Palpebral fissures are generally shortened and may slant up or down.  Cataracts of unknown morphology have been reported and strabismus is common.

Systemic Features: 

The systemic phenotype is highly variable.  Skull and facial anomalies are common with brachycephaly, bitemporal narrowing, and a broad low nasal bridge. There is general developmental delay in both motor and cognitive abilities.  Patients are short in stature while scoliosis, hip dysplasia, and post-axial polydactyly may be present.  The teeth may be malformed and numerous (29%) of individuals have hypertrichosis.  Nearly a third of individuals have a cleft palate/bifid uvula.   Heart malformations, primarily atrial septal defects, are found in about half of affected individuals and urogenital anomalies such as renal dysplasia are relatively common.  Feeding difficulties have been reported while anal atresia is present in about half of patients.   

Brain imaging reveals hypoplasia of the corpus callosum, enlarged ventricles, Dandy-Walker malformations, cerebellar hypoplasia, and abnormal gyration patterns in the frontal lobe.  Generalized hypotonia has been diagnosed in half of reported patients and seizures occur in 24%.

Genetics

This female-restricted syndrome is caused by heterozygous mutations in the USP9X gene (Xp11.4).  X-chromosome inactivation is skewed greater than 90% in the majority of females but the degree of skewing in one study was independent of clinical severity.  The majority of cases occur de novo.

In males, hemizygous mutations in the USP9X gene (300919) cause a somewhat similar disorder (MRX99) without the majority of the congenital malformations having mainly the intellectual disabilities, hypotonia, and behavioral problems.

Pedigree: 
X-linked dominant, mother affected
Treatment
Treatment Options: 

There is no known treatment for the general disorder but individual anomalies or defects such as atrial septal defects, cleft palate, and anal atresia might be surgically corrected.

References
Article Title: 

De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with Developmental Delay and Congenital Malformations

Reijnders MR, Zachariadis V, Latour B, Jolly L, Mancini GM, Pfundt R, Wu KM, van Ravenswaaij-Arts CM, Veenstra-Knol HE, Anderlid BM, Wood SA, Cheung SW, Barnicoat A, Probst F, Magoulas P, Brooks AS, Malmgren H, Harila-Saari A, Marcelis CM, Vreeburg M, Hobson E, Sutton VR, Stark Z, Vogt J, Cooper N, Lim JY, Price S, Lai AH, Domingo D, Reversade B; DDD Study, Gecz J, Gilissen C, Brunner HG, Kini U, Roepman R, Nordgren A, Kleefstra T. De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with Developmental Delay and Congenital Malformations. Am J Hum Genet. 2016 Feb 4;98(2):373-81.

PubMed ID: 
26833328

Immunodeficiency-Centromeric Instability-Facial Anomalies Syndrome 3

Clinical Characteristics
Ocular Features: 

Patients have been described as having variable oculofacial features including epicanthal folds, hypertelorism, strabismus, and 'tapetoretinal degeneration'.    

Systemic Features: 

The full phenotype is variable and unknown based on the 5 reported patients from 4 families of whom 3 were consanguineous.  Recurrent infections (especially respiratory and otitis media) seem to be among the most consistent features.  Others include intrauterine growth retardation, developmental delay including psychomotor delays, a flat midface with various anomalies, low-set ears, renal dysgenesis, polydactyly, severe agammaglobulinemia, hypospadias, and cryptorchidism.  Normal T-cell function and normal B cells are present.  Conductive hearing loss, polydactyly, and scoliosis may be features as well.  Two of the 5 reported patients with ICF3 were reported to have mental retardation.  One patient died at the age of 26 years.

Genetics

Homozygosity of CDCA7 (2q31.1) mutations with centromeric instability and hypomethylation of selected juxtacentromeric heterochromatin regions is responsible for this (ICF3) autosomal recessive condition.  There is genetic heterogeneity in ICF (ICF1, ICF2, ICF3, and ICF4 [see 242860).   

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment has been reported.

References
Article Title: 

Mutations in CDCA7 and HELLS cause immunodeficiency-centromeric instability-facial anomalies syndrome

Thijssen PE, Ito Y, Grillo G, Wang J, Velasco G, Nitta H, Unoki M, Yoshihara M, Suyama M, Sun Y, Lemmers RJ, de Greef JC, Gennery A, Picco P, Kloeckener-Gruissem B, Gungor T, Reisli I, Picard C, Kebaili K, Roquelaure B, Iwai T, Kondo I, Kubota T, van Ostaijen-Ten Dam MM, van Tol MJ, Weemaes C, Francastel C, van der Maarel SM, Sasaki H. Mutations in CDCA7 and HELLS cause immunodeficiency-centromeric instability-facial anomalies syndrome. Nat Commun. 2015 Jul 28;6:7870.

PubMed ID: 
26216346

Retinitis Pigmentosa 71

Clinical Characteristics
Ocular Features: 

Night blindness is noted in the first or second decades of life.  The fundus picture in this condition resembles classic retinitis pigmentosa with attenuated vessels, RPE anomalies with bone spicule clumping and areas of atrophy, and optic disc pallor.  Several patients had optic nerve drusen.  The retina appears to have microcysts, especially in the macula, and the outer retina is thinned.  

Systemic Features: 

Only a few patients have been reported with this form of RP and the full phenotype is unknown.  Some individuals are obese and one patient in addition had postaxial polydactyly and hypercholesterolemia suggestive of a Bardet-Biedl-like phenotype.  No reported patients have had rib dysplasia.

Genetics

Homozygous or compound heterozygous mutations in the IFT172 gene (2p23.3) have been identified in this condition.

The same gene is mutated in the recessive short-rib thoracic dysplasia 10 syndrome with or without polydactyly (615630).  Individuals with the short-rib syndrome may have night blindness and fundus changes resembling retinitis pigmentosa.

Because of the phenotypic overlap with other conditions such as Bardet-Biedl syndrome, the short-rib thoracic 10 syndrome (615630), Majewski syndrome (263520), Jeune syndrome (208520), short-rib thoracic dysplasia 9 (266920), and certain types of polycystic diseases of the kidney with abnormalities of the cilia, it has been suggested that RP71 should be classified as a syndromic ciliopathy.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome

Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, Consugar M, Lancelot ME, Antonio A, Lonjou C, Carpentier W, Mohand-Said S, den Hollander AI, Cremers FP, Leroy BP, Gai X, Sahel JA, van den Born LI, Collin RW, Zeitz C, Audo I, Pierce EA. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum Mol Genet. 2015 Jan 1;24(1):230-42.

PubMed ID: 
25168386

Filippi Syndrome

Clinical Characteristics
Ocular Features: 

The ocular features have not been fully described.  The most consistent features are long eyelashes, thick (bushy) eyebrows, and 'visual disturbance'.  Most individuals have a facial dysmorphism which includes a broad nasal base suggestive of hypertelorism.  Optic atrophy and proptosis have been noted. 

Systemic Features: 

Intrauterine growth retardation is sometimes seen.  Microcephaly, short stature, syndactyly, intellectual disability (often labeled mental retardation), and a dysmorphic face are characteristic.  Some individuals have cryptorchidism, seizures, and ectodermal abnormalities including nail hypoplasia, hirsutism, and microdontia.  Mental and physical delays are common.  The syndactyly usually involves only soft tissue between toes 2, 3, and 4 and fingers 3 and 4 accompanied by clinodactyly of the 5th finger.  Polydactyly is sometimes present while radiologically the radial head may show evidence of hypoplasia. 

Genetics

Homozygosity or compound heterozygosity in the CKAP2L gene (2q13) segregates with this phenotype. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Mutations in CKAP2L, the human homolog of the mouse Radmis gene, cause Filippi syndrome

Hussain MS, Battaglia A, Szczepanski S, Kaygusuz E, Toliat MR, Sakakibara S, Altmuller J, Thiele H, Nurnberg G, Moosa S, Yigit G, Beleggia F, Tinschert S, Clayton-Smith J, Vasudevan P, Urquhart JE, Donnai D, Fryer A, Percin F, Brancati F, Dobbie A, Smigiel R, Gillessen-Kaesbach G, Wollnik B, Noegel AA, Newman WG, Nurnberg P. Mutations in CKAP2L, the human homolog of the mouse Radmis gene, cause Filippi syndrome. Am J Hum Genet. 2014 Nov 6;95(5):622-32.

PubMed ID: 
25439729

Orofaciodigital Syndrome, Type VI

Clinical Characteristics
Ocular Features: 

Hypertelorism and epicanthal folds have been described.  Some patients have nystagmus and strabismus. Ocular apraxia and difficulties in smooth visual pursuit may be present.   

Systemic Features: 

Polydactyly of the hands is a common feature.  The central metacarpal is often Y-shaped leading to ‘central polydactyly’.  The large toes may be bifid.  Cognitive deficits are common and some patients have been considered mentally retarded.  The ears are low-set and rotated posteriorly.  Some patients have a conductive hearing loss.  Oral anomalies may include a lobed tongue, lingual and sublingual hemartomas, micrognathia, clefting, and multiple buccoalveolar frenula.  Congenital heart anomalies, micropenis, and cryptorchidism have been reported.  Tachypnea and tachycardia have been noted.  Some patients have some degree of skeletal dysplasia and many individuals are short in stature.

The presence of cerebellar abnormalities such as hypoplasia (including absence) of the vermis may help to distinguish type VI from other forms of OFDS.  Hypothalamic dysfunction may be responsible for poor temperature regulation (hyperthermia). The ‘molar tooth sign’ seen on brain MRIs in Joubert syndrome (213300) is also present in OFDS VI. 

Genetics

This is a rare condition with limited family information.  Parents in one family were consanguineous, and multiple affected sibs in other families suggest this may be an autosomal recessive condition.  Homozygous mutations in TMEM216 have been found. Other patients have mutations in C5orf42.

Many of the clinical features in OFDS VI are also found among individuals with Joubert (213300) and Meckel (249000) syndromes that also sometimes have mutations in the TMEM216 and C5orf42 genes.  Some consider all of these conditions to be members of a group of overlapping disorders called ciliopathies or ciliary dyskinesias.   

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment is available for this syndrome but individual signs and symptoms may need treatment.

References
Article Title: 

C5orf42 is the major gene responsible for OFD syndrome type VI

Lopez E, Thauvin-Robinet C, Reversade B, Khartoufi NE, Devisme L, Holder M, Ansart-Franquet H, Avila M, Lacombe D, Kleinfinger P, Kaori I, Takanashi JI, Le Merrer M, Martinovic J, No?'l C, Shboul M, Ho L, G?oven Y, Razavi F, Burglen L, Gigot N, Darmency-Stamboul V, Thevenon J, Aral B, Kayserili H, Huet F, Lyonnet S, Le Caignec C, Franco B, Rivi?(r)re JB, Faivre L, Atti?(c)-Bitach T. C5orf42 is the major gene responsible for OFD syndrome type VI. Hum Genet. 2013 Nov 1. [Epub ahead of print].

PubMed ID: 
24178751

Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes

Valente EM, Logan CV, Mougou-Zerelli S, Lee JH, Silhavy JL, Brancati F, Iannicelli M, Travaglini L, Romani S, Illi B, Adams M, Szymanska K, Mazzotta A, Lee JE, Tolentino JC, Swistun D, Salpietro CD, Fede C, Gabriel S, Russ C, Cibulskis K, Sougnez C, Hildebrandt F, Otto EA, Held S, Diplas BH, Davis EE, Mikula M, Strom CM, Ben-Zeev B, Lev D, Sagie TL, Michelson M, Yaron Y, Krause A, Boltshauser E, Elkhartoufi N, Roume J, Shalev S, Munnich A, Saunier S, Inglehearn C, Saad A, Alkindy A, Thomas S, Vekemans M, Dallapiccola B, Katsanis N, Johnson CA, Atti?(c)-Bitach T, Gleeson JG. Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat Genet. 2010 Jul;42(7):619-25.

PubMed ID: 
20512146

Microphthalmia, Syndromic 6

Clinical Characteristics
Ocular Features: 

Ultrasound evaluation reveals globe size to vary widely from extremely small (6 mm) to normal axial length. Clinical anophthalmia is often diagnosed.  Both anophthalmia and microphthalmia may exist in the same individual. True anophthalmia has been confirmed in some patients in which no ocular tissue was detectable with ultrasound examination.  In such cases the optic nerves and chiasm are often missing as well.  Iris colobomas are common and these may extend posteriorly.  Myopia is sometimes present.

The ERG reveals generalized rod and cone dysfunction in some eyes, but may be normal in others. In many eyes the ERG is nonrecordable. Cataracts are frequently present.

Systemic Features: 

Digital and hand anomalies are common.  The hands are often described as broad and the thumbs may be low-placed.  The nails can appear dysplastic and postaxial polydactyly is often present.  Mild webbing of the fingers has been reported as well.  Microcephaly and the cranium can be misshapen. A high arched palate is often present and clefting has also been noted.  Micrognathia may be present. Some evidence of physical growth retardation is often evident.

Pituitary hypoplasia is not uncommon and may be associated with hypothyroidism and cryptorchidism with hypospadias, and a small or bifid scrotum.

The brain anomalies vary considerably.  Many patients have mild to moderate developmental delays with some learning difficulties. Sensorineural hearing loss is often present. Hypoplasia of the vermis, thinning of the corpus callosum, widening of the lateral ventricles, and occasional generalized cortical atrophy, at least in older individuals, have been described.

Genetics

This is an autosomal dominant condition caused by a point mutation in BMP4 (bone morphogenetic protein-4) (14q22-q23).  A number of chromosomal deletions involving this gene have also been identified in individuals who have this syndrome but since contiguous genes such as OTX2 and SIX6 may also be involved, the phenotype is more likely to be associated with other anomalies including genital hypoplasia, pituitary hypoplasia, absence of the optic nerves and/or chiasm, developmental delay, digital malformations, and cerebellar dysplasia.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Cataracts can be removed in selected individuals with potential visual function.  Socket prostheses should be considered in anophthalmia and extreme microphthalmia.  Low vision devices, Braille, and mobility training should be initiated early when appropriate.  Hearing evaluations should be done as soon as practical.

Learning specialists and special education facilities should be available for selected patients.  Polydactyly, syndactyly, skull, and cleft palate repairs may be indicated.

References
Article Title: 

Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways

Bakrania P, Efthymiou M, Klein JC, Salt A, Bunyan DJ, Wyatt A, Ponting CP, Martin A, Williams S, Lindley V, Gilmore J, Restori M, Robson AG, Neveu MM, Holder GE, Collin JR, Robinson DO, Farndon P, Johansen-Berg H, Gerrelli D, Ragge NK. Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways. Am J Hum Genet. 2008 Feb;82(2):304-19.

PubMed ID: 
18252212

Duane-Radial Ray Syndrome

Clinical Characteristics
Ocular Features: 

Most individuals have features of Duane’s anomaly, sometimes unilaterally.  Optic pallor with poor vision has been described in well-studied patients who also had thinning of the retinal nerve fiber layer.  The optic disk may appear hypoplastic.  Visual evoked potentials and pattern ERG amplitudes are decreased.

Other less common ocular features are microcornea, microphthalmia, ophthalmoplegia, hypertelorism, cataracts, epicanthal folds, colobomas, and chorioretinal scars.

Systemic Features: 

The systemic features are inconsistent (variable expressivity) with most patients having some variation of hypodactyly, polydactyly, syndactyly, and malformation of the hands.  The thumb is the most common digit involved and this is often associated with thenar hypoplasia.  Other skeletal features of the radial ray syndrome including absence of the radial and ulnar bones are variably present.  Hearing loss is described as sensorineural in etiology but malformations of the pinnae and external meatus are sometimes present.

Kidney anomalies include horseshoe malformations, abnormal rotation, ectopia, small size, vesicoureteric reflux, and pelvicalyceal dilatation.

Genetics

This is an autosomal dominant disorder due to heterozygous mutations in the SALL4 gene (20q13.2).

This syndrome is sometimes confused with the Holt-Oram syndrome but the latter is the result of mutations in a different gene and lacks ocular and renal abnormalities.  Duane syndrome 1 and 2 may also occur as isolated conditions.

The considerable clinical heterogeneity has led to alternate titles for this syndrome. For example, what is sometimes called the IVIC syndrome (147750) with similar features is also caused by mutations in this gene.  Duane-radial ray syndrome has also been called Okihiro syndrome. 

 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment is symptomatic in most cases although reconstructive surgery may be helpful for severe hand deformities.  Low vision aids may be beneficial.  

References
Article Title: 

Meckel Syndrome

Clinical Characteristics
Ocular Features: 

The ocular phenotype is highly variable.  The globe is often malformed or may be clinically absent.  Cryptophthalmos, clinical anophthalmia, and microphthalmos with sclerocornea and microcornea have been reported.  Posterior staphylomas, retinal dysplasia, partial aniridia, cataracts, and hypoplasia or absence of the optic nerve are sometimes seen.  Some patients have incompletely formed eyes with shallow anterior chambers, angle anomalies, and a persistent tunica vasculosa with lens opacification.  Histopathology may reveal thinning of the nerve fiber layer and a paucity of retinal ganglion cells.  The retina has been described as dysplastic with foci of rosette-like structures and abundant glial cells.

Systemic Features: 

Meckel or Meckel-Gruber syndrome is a clinically and genetically heterogeneous group of disorders with severe multisystem manifestations.  The triad of cystic renal disease, polydactyly (and sometimes syndactyly), and a skull malformation (usually an encephalocele) is considered characteristic of MKS.  However, these signs are variable and only about 60% of patients have all three features.  Many patients have additional signs such as malformations of the biliary tree, cleft palate (and/or lip), sloping forehead, low-set ears, short neck, low-set ears, ambiguous genitalia, and short, bowed limb bones.  Pulmonary hypoplasia is common which, together with kidney and liver disease, is responsible for the poor prognosis of most infants. 

Many clinical abnormalities resemble those present in the Smith-Lemli-Opitz syndrome (270400) and in Joubert syndrome (213300).

Genetics

Most conditions in this group are inherited in an autosomal recessive pattern.  Mutations in 9 genes have been identified as responsible for some variant of MKS in which there is a considerable range of clinical expression.  There is significant clinical overlap with Joubert syndrome and it is not surprising that at least 5 of these mutations have been identified in both conditions.  Further nosological confusion is generated by those who consider patients with the severe, lethal phenotype to have Meckel syndrome while those with milder disease are labeled Joubert syndrome, regardless of genotype.

Rare heterozygotes have been reported with isolated features such as polydactyly.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for this syndrome.  The prognosis for life beyond infancy is poor due to the advanced dysfunction of numerous organs such as the kidney, lungs, liver and the central nervous system.

References
Article Title: 

Clinical and genetic heterogeneity in Meckel syndrome

Paavola P, Salonen R, Baumer A, Schinzel A, Boyd PA, Gould S, Meusburger H, Tenconi R, Barnicoat A, Winter R, Peltonen L. Clinical and genetic heterogeneity in Meckel syndrome. Hum Genet. 1997 Nov;101(1):88-92.

PubMed ID: 
9385376

Majewski Syndrome

Clinical Characteristics
Ocular Features: 

No clinical information is available on the ocular features in this disorder.  The fundi have been described as normal in one patient but postmortem histopathology at 8 weeks revealed optic nerve edema with segmental axonal dropout and loss of myelin.  The nerve fiber layer of the retina was prominent with some proliferation of glial tissue.  Early nuclear sclerosis was also present.

Systemic Features: 

This disorder results from a dysgenesis of the cilia and is one of a group of short rib-polydactyly disorders.  Congenital anomalies are found in multiple organs including heart, lungs, skeleton, intestines, genitalia, pancreas, liver, and kidneys.  The diagnostic characteristic of SRPS type II is extreme shortening of the tibia in addition to short ribs in this type of short-limbed dwarfism.

Midline facial clefting, especially cleft lip, is common.  The epiglottis and lungs are often hypoplastic and the kidneys are polycystic.  Polydactyly and polysyndactyly of both pre- and postaxial types are usually present.  Most neonates with SRPS type II do not live beyond infancy.

Genetics

This is an autosomal recessive condition resulting from homozygous mutations in the NEK1 gene (4q33), or, rarely, from digenic biallelic mutations in NEK1 and DYNC2H1 (11q22.3).

Another condition with some of the same features leading to respiratory distress is asphyxiating thoracic dysplasia 1 (208500), or Jeune syndrome.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment is available for this condition but surgical treatment could be considered for specific anomalies.

References
Article Title: 

NEK1 mutations cause short-rib polydactyly syndrome type majewski

Thiel C, Kessler K, Giessl A, Dimmler A, Shalev SA, von der Haar S, Zenker M, Zahnleiter D, Stoss H, Beinder E, Abou Jamra R, Ekici AB, Schroder-Kress N, Aigner T, Kirchner T, Reis A, Brandst?SStter JH, Rauch A. NEK1 mutations cause short-rib polydactyly syndrome type majewski. Am J Hum Genet. 2011 Jan 7;88(1):106-14.

PubMed ID: 
21211617

Joubert Syndrome and Related Disorders

Clinical Characteristics
Ocular Features: 

Ocular findings like systemic features are highly variable both within and between families.  Vision can be normal but in other patients it is severely reduced to the range of 20/200.  The pupils may respond sluggishly or even paradoxically to light.  ERG recordings have been reported to be normal in some patients, but absent or reduced in others.  The fundus appearance is often normal but in other individuals the pigmentation is mottled, the retinal arterioles are attenuated, and the macula has a cellophane maculopathy.  Drusen and colobomas are sometimes seen in the optic nerve while occasional patients have typical chorioretinal colobomas.  The eyebrows are often highly arched.

The oculomotor system is frequently involved.  Apraxia to some degree is common with most patients having difficulty with smooth pursuit and saccadic movements.  Compensatory head thrusting is often observed.  A pendular nystagmus may be present while esophoria or esotropia is present in many patients.

Systemic Features: 

There is a great deal of clinical heterogeneity in this group of ciliary dyskinesias.  Developmental delays, cognitive impairment, truncal ataxia, breathing irregularities, and behavioral disorders are among the more common features.  Hyperactivity and aggressiveness combined with dependency require constant vigilance and care.  Postaxial polydactyly is a feature of some cases.  Hypotonia is evident at birth.  Liver failure and renal disease develop in many individuals.  Neuroimaging of the midbrain-hindbrain area reveals agenesis or some degree of dysgenesis of the vermis with the 'molar tooth sign' in the isthmus region considered to be a diagnostic sign.  The fourth ventricle is usually enlarged while the cerebellar hemispheres may be hypoplastic.

The facies features are said to be distinctive in older individuals.  The face appears long with frontal prominence due to bitemporal narrowing, the nasal bridge and tip are prominent, the jaw is prominent, the lower lip protrudes, and the corners of the mouth are turned down.

Genetics

This is a clinically and genetically heterogeneous group of disorders with many overlapping features.  Most disorders in this disease category, known as JSRD, are inherited in an autosomal recessive pattern.  Mutations in at least 18 genes have been identified.  One, OFD1 (300804), is located on the X chromosome (Xp22.2).

There are significant clinical similarities to Meckel syndrome (249000) and Smith-Lemli-Opitz syndrome (270400).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment is mostly for specific symptoms such as respiratory distress, renal disease, speech and physical therapy, low vision, and hepatic failure.

References
Article Title: 

Ophthalmological findings in Joubert syndrome

Sturm V, Leiba H, Menke MN, Valente EM, Poretti A, Landau K, Boltshauser E. Ophthalmological findings in Joubert syndrome. Eye (Lond). 2010 Feb;24(2):222-5.

PubMed ID: 
19461662

Pages

Subscribe to RSS - polydactyly