optic atrophy

PEHO-Like Syndrome

Clinical Characteristics
Ocular Features: 

Poor visual fixation and attention has been noted during the first 6 months of life.  Optic atrophy has been described and epicanthal folds may be present.

Systemic Features: 

General hypotonia with developmental delay and progressive microcephaly are evident in the first 6-12 months of life.  Seizures may be present at birth or within the first month of life.  Edema of the feet, hands, and face are also present at birth.  Cognitive deficits and motor delays are usually evident during infancy.  The central hypotonia may be accompanied by peripheral spasticity.  Kyphoscoliosis often develops.  Other dysmorphic features include micrognathia, narrow forehead, short nose, and open mouth.

Brain imaging reveals coarse pachygyria, polymicrogyria, and dilated ventricles with hypoplastic corpus callosum and pons.  Cerebellar hypoplasia was found in one child. 

Genetics

This presumed autosomal recessive disorder is associated with homozygous mutations in the CCDC88A gene (2p16.1).  Three affected children have been reported in a consanguineous family.

A somewhat similar disorder known as PEHO syndrome (260565) results from homozygous mutations in the ZNHIT3 gene. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

The PEHO syndrome

Riikonen R. The PEHO syndrome. Brain Dev. 2001 Nov;23(7):765-9. Review.

PubMed ID: 
11701291

Pontocerebellar Hypoplasia 7

Clinical Characteristics
Ocular Features: 

The ocular phenotype has not been fully evaluated.  Optic atrophy, nystagmus, and strabismus have been reported in addition to dysmorphic periocular features such as epicanthal folds, upslanting lid fissures, and a flattened nasal bridge.  Infants frequently do not fix and follow.

Systemic Features: 

Infants may be small at birth and subsequent psychomotor development is delayed.  The ears are large and the palate is highly arched.  Hypotonia is present from birth but spasticity with hyperreflexia may also be seen.  Brain imaging may show a thin corpus callosum as well as olivopontocerebellar hypoplasia.  The ventricles are frequently enlarged.  Patients are frequently irritable with few spontaneous movements.

Genitalia can be ambiguous and are frequently assigned to the female gender because of microphallus, fused scrotum, absent testes, and absence of the uterus.  Many such infants are found to have XY karyotypes.  Infants considered male at birth may subsequently show regression of penile corporeal tissue and may have genitalia that more closely resemble the female gender.  Pelvic imaging and laparoscopy, however, may reveal a uterus, Fallopian tubes and a blind-ending vagina with no gonadal tissue even in individuals with XY karyotypes. 

Genetics

Homozygous or compound heterozygous mutations in the TOE1 gene (1p34.1) are responsible for this condition.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing

Lardelli RM, Schaffer AE, Eggens VR, Zaki MS, Grainger S, Sathe S, Van Nostrand EL, Schlachetzki Z, Rosti B, Akizu N, Scott E, Silhavy JL, Heckman LD, Rosti RO, Dikoglu E, Gregor A, Guemez-Gamboa A, Musaev D, Mande R, Widjaja A, Shaw TL, Markmiller S, Marin-Valencia I, Davies JH, de Meirleir L, Kayserili H, Altunoglu U, Freckmann ML, Warwick L, Chitayat D, Blaser S, Caglayan AO, Bilguvar K, Per H, Fagerberg C, Christesen HT, Kibaek M, Aldinger KA, Manchester D, Matsumoto N, Muramatsu K, Saitsu H, Shiina M, Ogata K, Foulds N, Dobyns WB, Chi NC, Traver D, Spaccini L, Bova SM, Gabriel SB, Gunel M, Valente EM, Nassogne MC, Bennett EJ, Yeo GW, Baas F, Lykke-Andersen J, Gleeson JG. Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nat Genet. 2017 Mar;49(3):457-464.

PubMed ID: 
28092684

Spastic Paraplegia, Intellectual Disability, Nystagmus, and Obesity

Clinical Characteristics
Ocular Features: 

Patients have deep-set eyes with nystagmus, reduced vision, and often an esotropia perhaps secondary to hypermetropia.  In one of 3 reported patients the optic discs were described pale.

Systemic Features: 

Prominent foreheads are present at birth along with full cheeks and a prominent forehead.  Children grow rapidly in the first year eventually reaching the 90th percentiles in weight, height, and head circumference although neurologically they are developmentally delayed.  Speech and walking may be delayed as well.  While limbs have increased tone together with hyperreflexia, the trunk exhibits hypotonia.

Brain imaging reveals delayed myelination, dilated lateral ventricles, reduced while matter, and cerebral atrophy.

Genetics

Heterozygous mutations in the KIDINS220 gene (2p25.1) have been identified in 3 unrelated patients.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Heterozygous KIDINS220/ARMS nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity

Josifova DJ, Monroe GR, Tessadori F, de Graaff E, van der Zwaag B, Mehta SG; DDD Study., Harakalova M, Duran KJ, Savelberg SM, Nijman IJ, Jungbluth H, Hoogenraad CC, Bakkers J, Knoers NV, Firth HV, Beales PL, van Haaften G, van Haelst MM. Heterozygous KIDINS220/ARMS nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity. Hum Mol Genet. 2016 Jun 1;25(11):2158-2167.

PubMed ID: 
27005418

Encephalopathy, Progressive, with Amyotrophy and Optic Atrophy

Clinical Characteristics
Ocular Features: 

Optic atrophy is present.

Systemic Features: 

This is a progressive neurodegenerative condition in which hypotonia and delayed development are evident between birth and 14 months of age.  Developmental milestones, if attained, soon regress accompanied by distal amyotrophy, cognitive impairment that may be severe, ataxia, spastic tetraplegia, dysarthria, and scoliosis.  Seizures often occur.

Brain imaging reveals cerebellar and cerebral atrophy.  Iron accumulation may be seen in the pallidum and substantia nigra.  The corpus callosum appears abnormally thin.  Muscle biopsy shows evidence of denervation atrophy.

Genetics

Homozygous or compound heterozygous mutations in the TBCE gene (1q42.3) can cause this disorder.  

Biallelic mutations in the same gene also cause Kenny-Caffey syndrome type 1 (244460) and a hypoparathyroidism dysmorphism syndrome (241410).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

TBCE Mutations Cause Early-Onset Progressive Encephalopathy with Distal Spinal Muscular Atrophy

Sferra A, Baillat G, Rizza T, Barresi S, Flex E, Tasca G, D'Amico A, Bellacchio E, Ciolfi A, Caputo V, Cecchetti S, Torella A, Zanni G, Diodato D, Piermarini E, Niceta M, Coppola A, Tedeschi E, Martinelli D, Dionisi-Vici C, Nigro V, Dallapiccola B, Compagnucci C, Tartaglia M, Haase G, Bertini E. TBCE Mutations Cause Early-Onset Progressive Encephalopathy with Distal Spinal Muscular Atrophy. Am J Hum Genet. 2016 Oct 6;99(4):974-983.

PubMed ID: 
27666369

Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy

Flex E, Niceta M, Cecchetti S, Thiffault I, Au MG, Capuano A, Piermarini E, Ivanova AA, Francis JW, Chillemi G, Chandramouli B, Carpentieri G, Haaxma CA, Ciolfi A, Pizzi S, Douglas GV, Levine K, Sferra A, Dentici ML, Pfundt RR, Le Pichon JB, Farrow E, Baas F, Piemonte F, Dallapiccola B, Graham JM Jr, Saunders CJ, Bertini E, Kahn RA, Koolen DA, Tartaglia M. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy. Am J Hum Genet. 2016 Oct 6;99(4):962-973.

PubMed ID: 
27666370

Epileptic Encephalopathy, Early Infantile 48

Clinical Characteristics
Ocular Features: 

Poor eye contact is present from infancy.  Optic atrophy has been reported in several patients and features of retinitis pigmentosa were present in sibs of one family.

Systemic Features: 

Infants usually present with hypotonia and feeding difficulties.  Global developmental delay is also noted early and becomes more obvious with time.  Seizures are often seen early and become intractable.  Many individuals have microcephaly.  Hypermobility with dyskinesias and hyporeflexia are often present.  Speech is generally absent and many individuals are unable to sit or walk.

Brain imaging often shows atrophy of the cerebrum and cerebellum accompanied by enlarged ventricles and a thin corpus callosum.

Genetics

Homozygous or compound heterozygous mutations in the AP3B2 gene (15q25.2) can be responsible for this condition.

For another somewhat similar condition see early onset epileptic encephalopathy 28 (616211) with autosomal recessive inheritance.  For an autosomal dominant condition with a similar clinical picture, see early onset epileptic encephalopathy 47 (617166).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic Atrophy

Assoum M, Philippe C, Isidor B, Perrin L, Makrythanasis P, Sondheimer N, Paris C, Douglas J, Lesca G, Antonarakis S, Hamamy H, Jouan T, Duffourd Y, Auvin S, Saunier A, Begtrup A, Nowak C, Chatron N, Ville D, Mireskandari K, Milani P, Jonveaux P, Lemeur G, Milh M, Amamoto M, Kato M, Nakashima M, Miyake N, Matsumoto N, Masri A, Thauvin-Robinet C, Riviere JB, Faivre L, Thevenon J. Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic Atrophy. Am J Hum Genet. 2016 Dec 1;99(6):1368-1376.

PubMed ID: 
27889060

Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield

Anazi S, Maddirevula S, Faqeih E, Alsedairy H, Alzahrani F, Shamseldin HE, Patel N, Hashem M, Ibrahim N, Abdulwahab F, Ewida N, Alsaif HS, Al Sharif H, Alamoudi W, Kentab A, Bashiri FA, Alnaser M, AlWadei AH, Alfadhel M, Eyaid W, Hashem A, Al Asmari A, Saleh MM, AlSaman A, Alhasan KA, Alsughayir M, Al Shammari M, Mahmoud A, Al-Hassnan ZN, Al-Husain M, Osama Khalil R, Abd El Meguid N, Masri A, Ali R, Ben-Omran T, El Fishway P, Hashish A, Ercan Sencicek A, State M, Alazami AM, Salih MA, Altassan N, Arold ST, Abouelhoda M, Wakil SM, Monies D, Shaheen R, Alkuraya FS. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry. 2016 Jul 19. doi: 10.1038/mp.2016.113. [Epub ahead of print].

PubMed ID: 
27431290

Encephalopathy, Early-Onset, With Brain Atrophy and Thin Corpus Callosum

Clinical Characteristics
Ocular Features: 

Optic atrophy is present in many patients and may be present early since lack of visual tracking or eye contact may be noted at birth.  Sparse eyebrows, upslanting palpebral fissures, and hypertelorism have also been reported.

Systemic Features: 

Severe hypotonia is present at birth often causing respiratory distress in the neonate.  Spasticity can develop later.  Growth failure with progressive microcephaly is present in infants.  Brain imaging often reveals diffuse atrophy of structures including the cerebellum, brainstem, spinal cord, and cerebrum.  Tongue fasciculations have been observed.   Micrognathia and widely spaced teeth are sometimes present.  Several patients have died during infancy.

Genetics

Homozygous mutations in the TBCD (17q25.3) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy

Flex E, Niceta M, Cecchetti S, Thiffault I, Au MG, Capuano A, Piermarini E, Ivanova AA, Francis JW, Chillemi G, Chandramouli B, Carpentieri G, Haaxma CA, Ciolfi A, Pizzi S, Douglas GV, Levine K, Sferra A, Dentici ML, Pfundt RR, Le Pichon JB, Farrow E, Baas F, Piemonte F, Dallapiccola B, Graham JM Jr, Saunders CJ, Bertini E, Kahn RA, Koolen DA, Tartaglia M. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy. Am J Hum Genet. 2016 Oct 6;99(4):962-973.

PubMed ID: 
27666370

Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy

Miyake N, Fukai R, Ohba C, Chihara T, Miura M, Shimizu H, Kakita A, Imagawa E, Shiina M, Ogata K, Okuno-Yuguchi J, Fueki N, Ogiso Y, Suzumura H, Watabe Y, Imataka G, Leong HY, Fattal-Valevski A, Kramer U, Miyatake S, Kato M, Okamoto N, Sato Y, Mitsuhashi S, Nishino I, Kaneko N, Nishiyama A, Tamura T, Mizuguchi T, Nakashima M, Tanaka F, Saitsu H, Matsumoto N. Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy. Am J Hum Genet. 2016 Oct 6;99(4):950-961.

PubMed ID: 
27666374

Optic Atrophy 11

Clinical Characteristics
Ocular Features: 

Optic atrophy is seen as early as 5 years of age but may be congenital in origin as hypoplasia of the optic nerve was present in all patients.  Three of 4 affected children also were myopic.

Systemic Features: 

This is a form of mitochondriopathy with considerable clinical heterogeneity.  A single consanguineous family with 4 affected children of ages 5-16 years of age has been reported.

Common features include short stature, microcephaly (1 had macrocephaly), hearing impairment. Ataxia, dysmetria, and athetotic movements may be present.  Motor and mental development are delayed as is expressive speech.  Intellectual disability is present in all 4 patients.  Leukoencephalopathy was seen in all patients and one had brain atrophy.  Cerebellar hypoplasia was present in 2 of four patients.

Muscle mitochondria in one patient had morphologic changes.  Lactate levels and lactate/pyruvate ratios were elevated in the blood and CSF fluid of three patients.

Genetics

Homozygous mutations in the YME1L1 gene (10p12.1) were responsible for this condition in 4 offspring of a consanguineous Saudi Arabian family.   This is a nuclear encoded mitochondrial gene.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.Hom

References
Article Title: 

Dystonia, Childhood Onset, With Optic Atrophy

Clinical Characteristics
Ocular Features: 

Optic atrophy is often observed during the first decade of life and has been noted as early as 15 months.  It may be congenital.  Nystagmus has been seen in some patients.

Systemic Features: 

Signs of motor dysfunction are seen in the first decade of life, and as early as 15 months of age.  Motor development may be mildly delayed.  Features are variable and include facial dystonia, myoclonus, dyskinesia, dysarthria, dysphagia, limb spasticity, and chorea-like movements all of which may progress.  Some patients lose independent ambulation but cognition is not affected.

Brain imaging reveals hyperintense T2-weighted signals in the basal ganglia.

Genetics

The transmission pattern in 5 reported families is consistent with autosomal recessive inheritance.  Biallelic mutations in the MECR gene (1p35) have been found in 7 affected individuals.

This nuclear gene plays a role in mitochondrial fatty acid synthesis.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

MECR Mutations Cause Childhood-Onset Dystonia and Optic Atrophy, a Mitochondrial Fatty Acid Synthesis Disorder

Heimer G, Keratar JM, Riley LG, Balasubramaniam S, Eyal E, Pietikainen LP, Hiltunen JK, Marek-Yagel D, Hamada J, Gregory A, Rogers C, Hogarth P, Nance MA, Shalva N, Veber A, Tzadok M, Nissenkorn A, Tonduti D, Renaldo F; University of Washington Center for Mendelian Genomics., Kraoua I, Panteghini C, Valletta L, Garavaglia B, Cowley MJ, Gayevskiy V, Roscioli T, Silberstein JM, Hoffmann C, Raas-Rothschild A, Tiranti V, Anikster Y, Christodoulou J, Kastaniotis AJ, Ben-Zeev B, Hayflick SJ. MECR Mutations Cause Childhood-Onset Dystonia and Optic Atrophy, a Mitochondrial Fatty Acid Synthesis Disorder. Am J Hum Genet. 2016 Dec 1;99(6):1229-1244.

PubMed ID: 
27817865

Cone-Rod Dystrophy with Hearing Loss

Clinical Characteristics
Ocular Features: 

Patients note reduced vision in brightly-lit environments with onset in early adulthood and progressive central vision loss thereafter.   Nystagmus, photophobia, and dyschromatopsia may be present.  Younger individuals may complain of night blindness.  Visual fields show diffuse progressive suppression with relative sparing of selected areas such as the peripapillary region.  The ERG documents primary cone dystrophy but less involvement of the rods.  EOG testing in 4 patients showed reduced light-dark ratios.  Macular degeneration, attenuated vessels, subtle salt-and-pepper pigmentation, and spicular pigmentary deposits in the mid-periphery may be seen.

Systemic Features: 

The hearing loss is sensorineural in nature and can be progressive from its onset in childhood.

Genetics

This autosomal recessive disorder results from homozygous or compound heterozygous mutations in the CEPL78 (9q21.2) gene.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment for the basic condition has been reported.  Assistive hearing devices and tinted lenses could be helpful.

References
Article Title: 

Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects

Nikopoulos K, Farinelli P, Giangreco B, Tsika C, Royer-Bertrand B, Mbefo MK, Bedoni N, Kjellstrom U, El Zaoui I, Di Gioia SA, Balzano S, Cisarova K, Messina A, Decembrini S, Plainis S, Blazaki SV, Khan MI, Micheal S, Boldt K, Ueffing M, Moulin AP, Cremers FP, Roepman R, Arsenijevic Y, Tsilimbaris MK, Andreasson S, Rivolta C. Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects. Am J Hum Genet. 2016 Sep 1;99(3):770-6.

PubMed ID: 
27588451

CEP78 is mutated in a distinct type of Usher syndrome

Fu Q, Xu M, Chen X, Sheng X, Yuan Z, Liu Y, Li H, Sun Z, Li H, Yang L, Wang K, Zhang F, Li Y, Zhao C, Sui R, Chen R. CEP78 is mutated in a distinct type of Usher syndrome. J Med Genet. 2016 Sep 14. pii: jmedgenet-2016-104166. doi: 10.1136/jmedgenet-2016-104166.

PubMed ID: 
27627988

Ataxia and Polyneuropathy, Adult-Onset

Clinical Characteristics
Ocular Features: 

This condition has its onset in young adults.  Early ocular signs are gaze-evoked horizontal nystagmus and defective ocular pursuit movements with the full range of extraocular movements.  Some patients but not all have optic atrophy.  Ptosis is not present.

Systemic Features: 

Gait disturbances have their onset in the first or second decades of life.  The gait may be broad-based.  Intermittent hemiparesis with headache, nausea and vomiting has been reported in some individuals.  Absent ankle jerks and extensor plantar responses have been noted but general muscle tone and strength is usually normal.   An axonal sensorimotor neuropathy may be present in midlife as documented by nerve conduction studies.  MRIs of the brain may reveal cerebellar atrophy.

Mild cognitive problems have been reported in a few individuals.

Genetics

This is a mitochondrial disorder secondary to mutations in the mitochondrial MT-ATP6 gene.

Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Pages

Subscribe to RSS - optic atrophy