oculomotor apraxia

Birk-Landau-Perez Syndrome

Clinical Characteristics
Ocular Features: 

Patients have oculomotor apraxia, saccadic pursuits, lack of fixation, and ptosis.  No pigmentary changes were seen in the fundi but the optic nerves have not been described.

Systemic Features: 

This is a progressive disorder in which psychomotor regression and loss of speech develop by 1 to 2 years of age, often appearing as the first sign of abnormalities.  Cognitive impairment can progress to profound intellectual disability.  Older patients have limb and truncal ataxia and experience frequent falls.  Muscle tone in the limbs is increased and children often exhibit dyskinesia, dystonia, and axial hypotonia.  General muscle weakness is often present.  No abnormalities have been seen on brain imaging.

Some patients develop a nephropathy with renal insufficiency, hypertension, and hyperechogenic kidneys though deterioration of the renal disease is slow.  Renal biopsy in one patient revealed tubulointerstitial nephritis but no individuals have reached end-stage renal failure.

Genetics

Homozygous mutations in the SLC30A9 gene (4p13) are responsible for this disorder.  A single multigenerational consanguineous Bedouin family of 6 affected individuals has been reported with a transmission pattern consistent with autosomal recessive inheritance.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment for the general disorder has been reported.  Electrolytes should be monitored and metabolic issues resulting from kidney malfunction may need to be addressed.

References
Article Title: 

Ataxia with Oculomotor Apraxia 3

Clinical Characteristics
Ocular Features: 

Ocular movement abnormalities are noted at the same time as other peripheral motor difficulties.  Slow saccadic eye movements, and head-eye lag are evident.  Pursuit movements are normal.

Systemic Features: 

Onset of gait instability occurs in the second decade of life with dysmetria and frequent falls. The eye movement abnormalities, dysarthria, and axial dysmetria with distal muscle atrophy and weakness are present at the same time.  Distal sensory deficits with lack of sensory nerve action potentials are also present in the lower limbs.  The upper limbs are involved somewhat later but with less pronounced movement impairment.  Hyporeflexia or areflexia is common.  The disorder is progressive with loss of independent mobility by the third decade.

Brain and spinal cord MRI imaging reveals cerebellar atrophy of the folia and vermis.  Persistently elevated alpha-fetoprotein levels have been found but no hypoalbuminemia.

Genetics

Homozygous missense mutations in the PIK3R5 gene (17p12-p13) have been associated with this clinical picture in one family of 4 affected sibs born of consanguineous parents.

See also Ataxia with Oculomotor Apraxia 1 (208920) with hypoalbuminemia, Ataxia with Oculomotor Apraxia 2 (606002) (also known as Spinocerebellar Ataxia, Autosomal Recessive 1 or SCAR1), and Ataxia with Oculomotor Apraxia 4 (616267).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy, Childhood-Onset

Clinical Characteristics
Ocular Features: 

Vertical gaze palsy has its onset between 7 and 15 years of age.   Nystagmus and oculomotor apraxia are often present.

Systemic Features: 

Onset of unsteadiness, gait ataxia, and cognitive decline are evident in the first or second decades of life.  Dysdiadokinesis, dysarthria, dysmetria, dystonia, athetotic movements, signs of Parkinsonism with tremor may also be present.  Some patients have a mild hearing loss.  Tissue from muscle biopsies are normal.  Brain imaging reveals cerebellar atrophy in some families and iron deposition in the basal ganglia in others.

Many patients are wheelchair-bound eventually.

Genetics

Homozygous mutations in the SQSTM1 gene (5q35.3) are responsible for this condition. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported but physical therapy, speech therapy, and special education may be of benefit.

References
Article Title: 

Absence of the Autophagy Adaptor SQSTM1/p62 Causes Childhood-Onset Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy

Haack TB, Ignatius E, Calvo-Garrido J, Iuso A, Isohanni P, Maffezzini C, Lonnqvist T, Suomalainen A, Gorza M, Kremer LS, Graf E, Hartig M, Berutti R, Paucar M, Svenningsson P, Stranneheim H, Brandberg G, Wedell A, Kurian MA, Hayflick SA, Venco P, Tiranti V, Strom TM, Dichgans M, Horvath R, Holinski-Feder E, Freyer C, Meitinger T, Prokisch H, Senderek J, Wredenberg A, Carroll CJ, Klopstock T. Absence of the Autophagy Adaptor SQSTM1/p62 Causes Childhood-Onset Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy. Am J Hum Genet. 2016 Sep 1;99(3):735-43.

PubMed ID: 
27545679

Ataxia with Oculomotor Apraxia 4

Clinical Characteristics
Ocular Features: 

Oculomotor apraxia is usually noted after the ataxia and dystonia are apparent.

Systemic Features: 

The mean age of first symptoms is 4.3 years with dystonia being the first symptom.  Cerebellar ataxia is usually the second symptom to appear.  Cognitive impairment is present in most but not all patients with this condition.  This can progress to severe dementia in some individuals.  Dystonia may become attenuated with time.  Peripheral neuropathy with decreased vibration sense and areflexia is often present.  Cerebellar atrophy is present in all patients.

Motor difficulties such as weakness and muscle atrophy may lead to loss of independent mobility by the second to third decades.

Genetics

Homozygous or compound heterozygous mutations in the PNKP gene (19q13.33) are responsible for this disorder.

Mutations in this gene have also been associated with an infantile form of epileptic encephalopathy, microcephaly, and developmental delay (613402).

See also Ataxia with Oculomotor Apraxia 1 (208920) with hypoalbuminemia, Ataxia with Oculomotor Apraxia 2 (606002), and Ataxia with Oculomotor Apraxia 3 (615217).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no general treatment for this condition but physical therapy may be helpful in the early stages.

References
Article Title: 

Spinocerebellar Ataxia 18

Clinical Characteristics
Ocular Features: 

Ocular signs in SCAR18 include nystagmus, oculomotor apraxia, and optic atrophy.  The nystagmus may be rotatory or horizontal and can be gaze-evoked.  Some patients have intermittent and tonic upgaze.  Visual acuity has not been reported.

Systemic Features: 

Patients are developmentally delayed and have intellectual disability.  These features do not seem to be progressive.  Ataxia, both truncal and cerebellar, is present.  Mobility is impaired from early childhood and eventually requires assistance.   Joint contractures sometimes develop and patients can be wheelchair-bound by the second decade.  Dysarthric speech is common.  No dysmorphic facial features are present.

Brain imaging shows progressive cerebellar and sometimes cerebral atrophy.

Genetics

This autosomal recessive disorder results from homozygous deletions in the GRID2 gene (4q22).  This gene codes for a subunit of the glutamate receptor channel and is thought to be selectively expressed in the Purkinje cells of the cerebellum.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.  However, physical therapy, assistive devices for mobility, and low vision aids may be helpful.

References
Article Title: 

Congenital Disorder of Glycosylation, Type Ia

Clinical Characteristics
Ocular Features: 

Strabismus, roving eye movements (and nystagmus), and visual inattention are found in nearly all patients. Esotropia with defective abduction seems to be the most common oculomotor finding and may be present at birth.  Cataracts, ocular colobomas, oculomotor apraxia, disc pallor, and glaucoma have also been reported.  Vision is always subnormal. Reports of ocular disease before modern genotyping are not specific to the subtypes of CDG I now recognized.

This is a congenital, progressive disorder of photoreceptor degeneration with a later onset of progressive pigmentary retinopathy.  It is described in some cases as a typical retinitis pigmentosa.  The ERG is abnormal in all patients even if the pigmentary pattern is atypical for RP.  Rod responses are usually absent while the cone b-wave implicit time is delayed.  The degree of photoreceptor damage is variable, however.  Extended retinal function among younger patients suggest that the ‘on-pathway’ evolving synapses in the outer plexiform layer among photoreceptors, bipolar cells, and horizontal cells is severely dysfunctional.

Systemic Features: 

This is a multisystem disorder, often diagnosed in the neonatal period by the presence of severe encephalopathy with hypotonia, hyporeflexia, and poor feeding.  Failure to thrive, marked psychomotor retardation, delayed development, growth retardation, and ataxia become evident later in those who survive.  Cerebellar and brainstem atrophy with a peripheral neuropathy can be demonstrated during late childhood.  Some older patients have a milder disease, often with muscle atrophy and skeletal deformities such as kyphoscoliosis and a fusiform appearance of the digits.  Maldistribution of subcutaneous tissue is often seen resulting in some dysmorphism, especially of the face.  Hypogonadism and enlargement of the labia majora are commonly present.  Some patients have evidence of hepatic and cardiac dysfunction which together with severe infections are responsible for a 20% mortality rate in the first year of life.

Genetics

This is one of a group of genetically (and clinically) heterogeneous autosomal recessive conditions caused by gene mutations that result in enzymatic defects in the synthesis and processing of oligosaccharides onto glycoproteins. This type (Ia) is the most common.   The mutation lies in the PMM2 gene (16p13.2).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Most children require tube feeding with nutritional supplements.  The risk of systemic infections is high.  Those patients who survive into the second decade and beyond may require orthopedic procedures and are confined to wheelchairs.  Physical, occupational, and speech therapy along with parental support are important.

References
Article Title: 

Joubert Syndrome and Related Disorders

Clinical Characteristics
Ocular Features: 

Ocular findings like systemic features are highly variable both within and between families.  Vision can be normal but in other patients it is severely reduced to the range of 20/200.  The pupils may respond sluggishly or even paradoxically to light.  ERG recordings have been reported to be normal in some patients, but absent or reduced in others.  The fundus appearance is often normal but in other individuals the pigmentation is mottled, the retinal arterioles are attenuated, and the macula has a cellophane maculopathy.  Drusen and colobomas are sometimes seen in the optic nerve while occasional patients have typical chorioretinal colobomas.  The eyebrows are often highly arched.

The oculomotor system is frequently involved.  Apraxia to some degree is common with most patients having difficulty with smooth pursuit and saccadic movements.  Compensatory head thrusting is often observed.  A pendular nystagmus may be present while esophoria or esotropia is present in many patients.

Systemic Features: 

There is a great deal of clinical heterogeneity in this group of ciliary dyskinesias.  Developmental delays, cognitive impairment, truncal ataxia, breathing irregularities, and behavioral disorders are among the more common features.  Hyperactivity and aggressiveness combined with dependency require constant vigilance and care.  Postaxial polydactyly is a feature of some cases.  Hypotonia is evident at birth.  Liver failure and renal disease develop in many individuals.  Neuroimaging of the midbrain-hindbrain area reveals agenesis or some degree of dysgenesis of the vermis with the 'molar tooth sign' in the isthmus region considered to be a diagnostic sign.  The fourth ventricle is usually enlarged while the cerebellar hemispheres may be hypoplastic.

The facies features are said to be distinctive in older individuals.  The face appears long with frontal prominence due to bitemporal narrowing, the nasal bridge and tip are prominent, the jaw is prominent, the lower lip protrudes, and the corners of the mouth are turned down.

Genetics

This is a clinically and genetically heterogeneous group of disorders with many overlapping features.  Most disorders in this disease category, known as JSRD, are inherited in an autosomal recessive pattern.  Mutations in at least 18 genes have been identified.  One, OFD1 (300804), is located on the X chromosome (Xp22.2).

There are significant clinical similarities to Meckel syndrome (249000) and Smith-Lemli-Opitz syndrome (270400).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment is mostly for specific symptoms such as respiratory distress, renal disease, speech and physical therapy, low vision, and hepatic failure.

References
Article Title: 

Ophthalmological findings in Joubert syndrome

Sturm V, Leiba H, Menke MN, Valente EM, Poretti A, Landau K, Boltshauser E. Ophthalmological findings in Joubert syndrome. Eye (Lond). 2010 Feb;24(2):222-5.

PubMed ID: 
19461662

Ataxia with Oculomotor Apraxia 2

Clinical Characteristics
Ocular Features: 

Patients with this disorder have difficulty initiating voluntary ocular movements upon command or following targets (oculomotor apraxia).  This feature is not as prominent or frequent in AOA2 (56%) as it is in ataxia with oculomotor apraxia 1 (208920).  Gaze changes are often initiated first by head thrusting, followed by saccadic eye movements. One may test for this by holding the head whereupon the patient is unable to move the eyes.  Strabismus and nystagmus are present in a significant proportion of patients.  Optokinetic nystagmus is impaired.

Systemic Features: 

Initial development proceeds normally but cerebellar ataxia with significant gait problems appear toward the end of the first decade of life and sometimes not until the third decade (mean age of onset 15 years).   Distal muscle weakness and atrophy are often seen.  Mental decline has been observed in a few individuals but does not occur until midlife.  Sensorimotor deficits are present in many patients.  Tremors, dystonia, and choreiform movements are sometimes seen.  Many patients become wheelchair-bound by the 4th decade of life.

Cerebellar atrophy is revealed by MRI.  Serum alpha-fetoprotein concentrations are usually elevated while serum creatine kinase is increased in some patients.  Circulating cholesterol may also be above normal.  Mild serum changes in these components may be seen in heterozygotes.  Hypoalbuminemia is not present in AOA2.

Genetics

Homozygous mutations in SETX (9q34.13) are responsible for this disorder.  Ataxia with oculomotor apraxia 2 is distinguished from ataxia-telangiectasia (208900) by the lack of telangiectases and immunological deficiencies. It differs from ataxia with oculomotor apraxia 1 (208920) in having a somewhat later onset, somewhat slower course, and milder oculopraxic manifestations. Cogan-type oculomotor apraxia (257550) lacks other neurologic signs. Oculomotor apraxia may be the presenting sign in Gaucher disease (230800, 230900, 231000).

See also Ataxia with Oculomotor Apraxia 3 (615217), and Ataxia with Oculomotor Apraxia 4 (616267).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no beneficial treatment for the neurological disease but physical therapy, speech therapy, and sometimes special education can be helpful.

References
Article Title: 

Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management

Anheim M, Fleury M, Monga B, Laugel V, Chaigne D, Rodier G, Ginglinger E, Boulay C, Courtois S, Drouot N, Fritsch M, Delaunoy JP, Stoppa-Lyonnet D, Tranchant C, Koenig M. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics. 2010 Feb;11(1):1-12.

PubMed ID: 
19440741

Ataxia with oculomotor apraxia type 2: a clinical, pathologic, and genetic study

Criscuolo C, Chessa L, Di Giandomenico S, Mancini P, Sacc?+ F, Grieco GS, Piane M, Barbieri F, De Michele G, Banfi S, Pierelli F, Rizzuto N, Santorelli FM, Gallosti L, Filla A, Casali C. Ataxia with oculomotor apraxia type 2: a clinical, pathologic, and genetic study. Neurology. 2006 Apr 25;66(8):1207-10.

PubMed ID: 
16636238

Oculomotor Apraxia

Clinical Characteristics
Ocular Features: 

This is a disorder of impaired smooth ocular pursuit movements.  Voluntary horizontal eye movements are absent or defective while vertical gaze and random eye movements are usually retained.  Patients learn early to compensate by sharply turning the head in a jerky, thrusting fashion.  The head turn often overshoots because the eyes tend to deviate in the opposite direction as a result of the vestibular reflex.  Blinking is also sometimes employed to initiate eye movements.  The condition is likely congenital in onset but it is not progressive.  In fact, the ability to look from side to side improves in at least some patients.

Systemic Features: 

The small number of reported patients has limited description of the full phenotype but this seems to be a generalized neurological disorder.  Patients have been reported with global developmental delay, hypotonia, cognitive delays, ataxia/clumsiness, and speech difficulties.  Neuroimaging may reveal abnormalities in various brain stuctures including the cerebellum, cerebrum, vermis, and corpus callosum in 40% of patients.       

Genetics

The genetics of isolated oculomotor apraxia is unknown since no responsible mutation has been identified.  However, familial cases are known, including twins and sibling offspring of consanguineous matings, as well as multigenerational cases.  This condition may be genetically heterogeneous since autosomal recessive and autosomal dominant transmission patterns seem equally likely.  It may also be possible that the Cogan-type oculomotor apraxia is not a isolated entity but simply an associated sign as part of more generalized neurological disease.

Oculomotor apraxia may also be seen in ataxia-telangiectasia (208900), ataxia with oculomotor apraxia 1 (208920), ataxia with oculomotor apraxia 2 (602600) and in Gaucher disease (203800).  It may be the presenting sign in the latter disease.  

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Nosological delineation of congenital ocular motor apraxia type Cogan: an observational study

Wente S, Schroder S, Buckard J, Buttel HM, von Deimling F, Diener W, Haussler M, Hubschle S, Kinder S, Kurlemann G, Kretzschmar C, Lingen M, Maroske W, Mundt D, Sanchez-Albisua I, Seeger J, Toelle SP, Boltshauser E, Brockmann K. Nosological delineation of congenital ocular motor apraxia type Cogan: an observational study. Orphanet J Rare Dis. 2016 Jul 29;11(1):104. doi: 10.1186/s13023-016-0486-z.

PubMed ID: 
27473762

Ataxia with Oculomotor Apraxia 1

Clinical Characteristics
Ocular Features: 

Patients with this disorder have difficulty initiating voluntary ocular movements upon command or when following targets (oculomotor apraxia).  Gaze changes are often initiated first by head thrusting, followed by saccadic eye movements.  One may test for this by holding the head whereupon the patient is unable to move the eyes.  Ocular apraxia is often evident a few years after symptoms of ataxia are noted and may progress to external ophthalmoplegia.  Most patients have exaggerated blinking.

Systemic Features: 

The ataxia is cerebellar in origin with onset usually in the first decade of life (mean age of onset 4.3 years). It is associated with peripheral axonal neuropathy and hypoalbuminemia. Gait imbalance is usually the first symptom followed by upper limb dysmetria.  Other variable signs include dysarthria, choreiform or athetoid movements, facial grimacing, tongue and limb fasciculations, areflexia, and distal sensory deficits.   All symptoms are progressive and ambulation is lost within a decade of onset.  Cerebellar atrophy may be seen on MRI and the EMG shows evidence of axonal neuropathy.  Mental function is normal in most patients but some have cognitive impairments.

Genetics

Mutations in the APTX gene (9p21.1) encoding aprataxin are responsible for this autosomal recessive condition. 

There is evidence of clinical and genetic heterogeneity.  At least two loci are involved, with the mutation at 9p13 causing an earlier onset of disease (first decade), and hypoalbuminemia, while the second one, ataxia with oculomotor apraxia 2  [606002]) at 9q34 causes a disorder of later onset (2nd or third decade) in which oculomotor apraxia is an inconsistent finding.  Oculomotor apraxia is more consistently found in the disorder described here.  Cogan-type oculomotor apraxia (257550) lacks other neurologic signs.

See also Ataxia with Oculomotor Apraxia 3 (615217), and Ataxia with Oculomotor Apraxia 4 (616267).

Oculomotor apraxia may be the presenting sign in Gaucher disease (230800, 230900, 231000). 

The ocular phenotype is similar to that seen in ataxia-telangiectasia (208900).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment is available although physical therapy can be helpful.

References
Article Title: 

Aprataxin gene mutations in Tunisian families

Amouri R, Moreira MC, Zouari M, El Euch G, Barhoumi C, Kefi M, Belal S, Koenig M, Hentati F. Aprataxin gene mutations in Tunisian families. Neurology. 2004 Sep 14;63(5):928-9.

PubMed ID: 
15365154

Pages

Subscribe to RSS - oculomotor apraxia