kyphoscoliosis

Combined Oxidative Phosphorylation Deficiency 32

Clinical Characteristics
Ocular Features: 

Ocular signs are common but variable.  Patients may not make eye contact and sometimes have disconjugate eye movements.  Strabismus (usually exotropia) and nystagmus or often present.

Systemic Features: 

Six patients from 4 unrelated families of mixed ethnic backgrounds have been reported.  Infants within the first 4 to 6 months of life had evidence of developmental delay and neurodevelopmental regression.  Poor feeding and breathing difficulties are often noted in this period.  Other later signs are axial hypotonia, abnormal movements such as tremor, spasticity, hyperkinetic movements, dystonia with eventual regression of milestones.  Joint contractures and kyphoscoliosis may develop. 

Microcephaly was noted in several infants and brain imaging in all patients reveals abnormal T2- weighted signals in the brainstem and specifically in the basal ganglia.  Decreased activity in muscle mitochondrial respiratory complexes I, III, and IV has been documented.  Lactate may be increased in serum and the CSF.  Postmortem studies show brain vascular proliferation and gliosis in basal structures.

Genetics

Homozygous or compound heterozygous mutations in MRPS34 (16p13.3) are the basis for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Biallelic Mutations in MRPS34 Lead to Instability of the Small Mitoribosomal Subunit and Leigh Syndrome

Lake NJ, Webb BD, Stroud DA, Richman TR, Ruzzenente B, Compton AG, Mountford HS, Pulman J, Zangarelli C, Rio M, Bodaert N, Assouline Z, Sherpa MD, Schadt EE, Houten SM, Byrnes J, McCormick EM, Zolkipli-Cunningham Z, Haude K, Zhang Z, Retterer K, Bai R, Calvo SE, Mootha VK, Christodoulou J, Rotig A, Filipovska A, Cristian I, Falk MJ, Metodiev MD, Thorburn DR. Biallelic Mutations in MRPS34 Lead to Instability of the Small Mitoribosomal Subunit and Leigh Syndrome. Am J Hum Genet. 2017 Aug 3;101(2):239-254.

PubMed ID: 
28777931

Joint Laxity, Short Stature, and Myopia

Clinical Characteristics
Ocular Features: 

Three of four brothers in one family had high myopia and two had retinal detachments as well as iris and chorioretinal colobomas.  In a second family with five sibs a teenage female was reported to have glaucoma and vision of legal blindness.  She and one brother had high myopia as well (parameters not reported).

Systemic Features: 

In one consanguineous family a brother and sister had multiple large joint dislocations including elbows, hips, knees and ankles.  The sister exhibited severe kyphoscoliosis while her brother had only mild kyphosis.  A single individual in each of the two sibships had hearing loss.

Three brothers in another consanguineous family had joint laxity and mild pectus carinatum.

Short stature was noted in all 5 affected individuals.  Cognitive development was reported as normal.

Genetics

Five individuals from 2 consanguineous Saudi sibships have been reported.  Homozygous mutations in the GZF1 gene (20p11.21) segregated as expected for an autosomal recessive disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.   Retinal detachment surgery and joint dislocation reduction should be considered in appropriate individuals.

References
Article Title: 

GZF1 Mutations Expand the Genetic Heterogeneity of Larsen Syndrome

Patel N, Shamseldin HE, Sakati N, Khan AO, Softa A, Al-Fadhli FM, Hashem M, Abdulwahab FM, Alshidi T, Alomar R, Alobeid E, Wakil SM, Colak D, Alkuraya FS. GZF1 Mutations Expand the Genetic Heterogeneity of Larsen Syndrome. Am J Hum Genet. 2017 May 4;100(5):831-836.

PubMed ID: 
28475863

PEHO-Like Syndrome

Clinical Characteristics
Ocular Features: 

Poor visual fixation and attention has been noted during the first 6 months of life.  Optic atrophy has been described and epicanthal folds may be present.

Systemic Features: 

General hypotonia with developmental delay and progressive microcephaly are evident in the first 6-12 months of life.  Seizures may be present at birth or within the first month of life.  Edema of the feet, hands, and face are also present at birth.  Cognitive deficits and motor delays are usually evident during infancy.  The central hypotonia may be accompanied by peripheral spasticity.  Kyphoscoliosis often develops.  Other dysmorphic features include micrognathia, narrow forehead, short nose, and open mouth.

Brain imaging reveals coarse pachygyria, polymicrogyria, and dilated ventricles with hypoplastic corpus callosum and pons.  Cerebellar hypoplasia was found in one child. 

Genetics

This presumed autosomal recessive disorder is associated with homozygous mutations in the CCDC88A gene (2p16.1).  Three affected children have been reported in a consanguineous family.

A somewhat similar disorder known as PEHO syndrome (260565) results from homozygous mutations in the ZNHIT3 gene. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

The PEHO syndrome

Riikonen R. The PEHO syndrome. Brain Dev. 2001 Nov;23(7):765-9. Review.

PubMed ID: 
11701291

Spastic Paraplegia with Psychomotor Retardation and Seizures

Clinical Characteristics
Ocular Features: 

The eyes are usually deeply set.  Nothing is known regarding visual acuity.  Strabismus is a common feature.  Retinal dystrophy (not further described) has been reported in 4 of 8 patients described.  The ERG in one individual was read as consistent with cone-rod dystrophy.

Systemic Features: 

Newborns are hypotonic and severe psychomotor retardation is evident a few months later.  Truncal ataxia and progressive lower limb spasticity are seen later.  Mobility is significantly impaired and many individuals are confined to bed or a wheelchair and never walk.  Dysarthria is frequently present and some individuals have a neurosensory hearing loss.  Myoclonic seizures may be evident.  Kyphoscoliosis, macrocephaly, and various foot deformities have been described.

CT scans of the brain may show generalized cerebral atrophy and a hypoplastic corpus callosum.  The ventricles may be enlarged and the EEG confirms the occurrence of myoclonic as well as tonic-clonic and focal epilepsy.

Genetics

This is an autosomal recessive disorder caused by homozygous or compound heterozygous mutations in the HACE1 gene (6q16).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported for this condition but physical therapy and assistive devices such as hearing and visual aids may be helpful.

References
Article Title: 

DDD study. Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families

Akawi N, McRae J, Ansari M, Balasubramanian M, Blyth M, Brady AF, Clayton S, Cole T, Deshpande C, Fitzgerald TW, Foulds N, Francis R, Gabriel G, Gerety SS, Goodship J, Hobson E, Jones WD, Joss S, King D, Klena N, Kumar A, Lees M, Lelliott C, Lord J, McMullan D, O'Regan M, Osio D, Piombo V, Prigmore E, Rajan D, Rosser E, Sifrim A, Smith A, Swaminathan GJ, Turnpenny P, Whitworth J, Wright CF, Firth HV, Barrett JC, Lo CW, FitzPatrick DR, Hurles ME; DDD study. Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families. Nat Genet. 2015 Nov;47(11):1363-9.

PubMed ID: 
26437029

HACE1 deficiency causes an autosomal recessive neurodevelopmental syndrome

Hollstein R, Parry DA, Nalbach L, Logan CV, Strom TM, Hartill VL, Carr IM, Korenke GC, Uppal S, Ahmed M, Wieland T, Markham AF, Bennett CP, Gillessen-Kaesbach G, Sheridan EG, Kaiser FJ, Bonthron DT. HACE1 deficiency causes an autosomal recessive neurodevelopmental syndrome. J Med Genet. 2015 Dec;52(12):797-803.

PubMed ID: 
26424145

Morquio Syndrome (MPS IVA)

Clinical Characteristics
Ocular Features: 

Corneal clouding in the form of fine deposits in the stroma is the major ocular manifestation but it may not be noted for several years after birth.  Penetrating keratoplasty is rarely needed.  Glaucoma occurs rarely.

Systemic Features: 

There is wide variation in the clinical disease in this disorder and some have grouped cases into severe, intermediate and mild categories.   Onset is about 2 years of age and three-quarters of patients are diagnosed by the age of 6 years.  Intelligence is usually normal and the central nervous system is spared similar to MPS IVB. However, the skeletal dysplasia can lead to neurologic complications.  In particular, odontoid hypoplasia raises the risk of atlantoaxial dislocation and spinal cord damage. The maxillary teeth are often abnormal with wide spacing and a flared appearance.  Truncal dwarfism is characteristic but the facies are often more fine-featured than in other mucopolysaccharidoses.  Lifespan is shortened in most patients.

Genetics

This is an autosomal recessive disorder resulting from mutations in the GALNS gene (16q24.3) encoding galactosamine-6-sulfate sulfatase.  Keratan sulfate and chondroitin-5-sulfate accumulates in lysosomes.  Urinary keratin sulfate excretion is increased.

A clinically similar disease, Morquio syndrome B (253010), is caused by a different mutation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment is available for this disease.  Some have recommended cervical spine fusion to stabilize the atlantoaxial joint. Orthopedic surgery may be indicated for joint and spine deformities.  Special precautions should be taken during intubation for general anesthesia.

Enzyme replacement therapies and hematopoietic stem cell transplantation techniques now being developed hold promise for more specific treatment for the underlying enzyme deficiencies in mucopolysaccharidoses.

References
Article Title: 

Mucopolysaccharidoses and the eye

Ashworth JL, Biswas S, Wraith E, Lloyd IC. Mucopolysaccharidoses and the eye. Surv Ophthalmol. 2006 Jan-Feb;51(1):1-17. Review.

PubMed ID: 
16414358

Kniest Dysplasia

Clinical Characteristics
Ocular Features: 

High myopia and vitreoretinal degeneration are characteristic ocular features in this disorder.   The myopia is in the range of -7.5 to -15.25 with most patients having about -11 diopters.  Acuity may be normal but inoperable retinal detachments can lead to blindness.  The vitreous demonstrates liquefaction and syneresis and often detaches posteriorly forming a retrolental curtain.  About half of affected eyes have perivascular lattice degeneration and the same proportion of patients at some point develop a retinal detachment.  Giant tears and retinal dialysis are commonly the cause.  The lens is often dislocated and cataracts are common.

Systemic Features: 

Short stature, cleft palate, stiff joints, and conductive hearing loss are characteristic extraocular features of Kniest dysplasia.  Some patients develop frank joint contractures and many are unable to make a tight fist due to inflexibility of the interphalangeal joints.  Lumber kyphoscoliosis is common.  Epiphyseal cartilage has a 'Swiss cheese appearance' with prominent lacunae.  The facies are round and the midface is underdeveloped with a flat nasal bridge.  Mild psychomotor retardation is sometimes seen.  

High levels of keratin sulfate are found in the urine.

Genetics

Mutations in the COL2A1 gene (12q13.11-q13.2) coding for type II collagen is responsible for this autosomal dominant disorder. This is one of a number of disorders known as type II collagenopathies (see Stickler syndrome I [609508]).  The clinical features arise from a defect in type II procollagen.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no treatment for the dysplasia.  Displaced lenses can be removed but the myopia and degenerated vitreous require a cautious approach.  Rhegmatogenous detachments demand prompt attention.

References
Article Title: 

Ophthalmic and molecular genetic findings in Kniest dysplasia

Sergouniotis PI, Fincham GS, McNinch AM, Spickett C, Poulson AV, Richards AJ, Snead MP. Ophthalmic and molecular genetic findings in Kniest dysplasia. Eye (Lond). 2015 Jan 16. doi: 10.1038/eye.2014.334. [Epub ahead of print].

PubMed ID: 
25592122

The Kniest syndrome

Siggers CD, Rimoin DL, Dorst JP, Doty SB, Williams BR, Hollister DW, Silberberg R, Cranley RE, Kaufman RL, McKusick VA. The Kniest syndrome. Birth Defects Orig Artic Ser. 1974;10(9):193-208.

PubMed ID: 
4214536

Stickler Syndrome, Type I

Clinical Characteristics
Ocular Features: 

High myopia and vitreous degeneration dominate the ocular manifestations of Stickler syndrome, type I.  The vitreous often appears optically empty as it liquefies and the fibrils degenerate.  The vitreous is sometimes seen to form 'veils', especially in the retrolenticular region but they may also float throughout the posterior chamber.  They are often attached to areas of lattice degeneration in the retina as well as other areas.  Posterior vitreous detachments are common.  Vitreoretinal degeneration is progressive and by the second decade rhegmatogenous detachments occur in half of affected patients.  As many as three quarters of adult patients have retinal breaks.  The retina has pigmentary changes with deposition circumferentially near the equator and more peripherally.  Hypopigmentation is more common early creating a tessellated appearance.  Lenticular opacities occur also early with cortical flecks and wedge-shaped changes.

The ERG may be normal early but evidence of rod and cone dysfunction soon appears and is progressive.  Dark adaptation is defective later in the course of the disease.  The EOG is virtually always depressed.  The visual field is constricted and may show a ring scotoma coincident with the equatorial chorioretinal atrophy.

Glaucoma is not uncommon and may be infantile in onset and difficult to control.  

Phthisis is a significant risk especially for individuals who have multiple surgical procedures for retinal detachments. 

Systemic Features: 

It has been suggested that there is a nonsyndromic or ocular type of Stickler syndrome lacking many of the extraocular features characteristic of the complete syndrome.  However, the evidence for the ocular type described here as a distinct entity remains slim and the clinical picture may simply reflect variable expressivity of mutations in the same gene.  Type I Stickler syndrome has multiple systemic features such as cleft palate, hearing impairment, premature arthritis, micrognathia, kyphoscoliosis, and some signs such as arachnodactyly that are found in the Marfan syndrome.

Genetics

This is an autosomal dominant disease of collagen formation as a result of mutations in the COL2A1 gene (12q13.11-q13.2). The mutations causing both syndromal and the suggested nonsyndromal ocular type of Stickler disease are in the same gene.  Mutations in the same gene are known to cause autosomal dominant rhegmatogenous retinal detachments in patients who have none of the systemic clinical signs (609508).  These patients may lack the signs of vitreous degeneration seen in Kniest dysplasia (156550)  and in the disorder described here.

There is better evidence for a second type of Stickler syndrome, STL2 or type II (604841) based on phenotypic differences and the fact that a second locus (1p21) containing mutations in COL11A1 has been linked to it. 

Type III is caused by mutations in COL11A2 and has systemic features similar to types I and II but lacks the eye findings since this gene is not expressed in the eye.

Type IV also has important ocular features but is an autosomal recessive disorder caused by mutations in COL9A2.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

The combination of progressive vitreoretinal degeneration, frequency of posterior vitreous detachments, and axial myopia creates a lifelong threat of retinal tears and detachments.   Half to three quarters of all patients develop retinal tears and detachments.  Certainly all patients with Stickler syndrome deserve repeated and thorough retinal exams throughout their lives.  In addition to prompt treatment of tears and detachments, some have advocated prophylactic scleral banding to reduce vitreous traction, or applying 360 degree cryotherapy.

References
Article Title: 

Stickler syndrome in children: a radiological review

McArthur N, Rehm A, Shenker N, Richards AJ, McNinch AM, Poulson AV, Tanner J, Snead MP, Bearcroft PWP. Stickler syndrome in children: a radiological review. Clin Radiol. 2018 Apr 13. pii: S0009-9260(18)30118-1. doi: 10.1016/j.crad.2018.03.004. [Epub ahead of print].

PubMed ID: 
29661559

High efficiency of mutation detection in type 1 stickler syndrome using a two-stage approach: vitreoretinal assessment coupled with exon sequencing for screening COL2A1

Richards AJ, Laidlaw M, Whittaker J, Treacy B, Rai H, Bearcroft P, Baguley DM, Poulson A, Ang A, Scott JD, Snead MP. High efficiency of mutation detection in type 1 stickler syndrome using a two-stage approach: vitreoretinal assessment coupled with exon sequencing for screening COL2A1. Hum Mutat. 2006 Jul;27(7):696-704. Erratum in: Hum Mutat. 2006 Nov;27(11):1156.

PubMed ID: 
16752401
Subscribe to RSS - kyphoscoliosis