high-arched palate

Neurodevelopmental Disorder with Progressive Microcephaly, Spasticity, and Brain Anomalies

Clinical Characteristics
Ocular Features: 

 Examined patients have optic atrophy with nystagmus and roving eye movements.

Systemic Features: 

There are extensive and, in most cases, progressive CNS abnormalities resulting in severe neurodevelopmental deficits.  Infants at birth have progressive truncal hypotonia and limb spasticity.  Motor deficits result in little spontaneous movement, resulting in poor sucking, and respiratory difficulties.  Language does not develop and there is profound mental retardation. Progressive microcephaly is a characteristic finding.  There are often extrapyramidal signs such as rigidity and dystonic posturing.

Dysmorphic features include a short nose, high-arched palate, low-set and posteriorly rotated ears, micrognathia, postaxial polydactyly, hirsutism, pectus carinatum, contractures of large joints, and hyperextensibility of small joints.

Brain imaging shows a progressive leukoencephalopathy, cerebral and cerebellar atrophy, and delayed myelination.  The corpus callosum is often thin and the ventricles appear enlarged.  The lifespan is generally short with death occurring in infancy or early childhood.

Genetics

This autosomal recessive disorder results from homozygous mutations in the PLAA gene (9p21). 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins

Hall EA, Nahorski MS, Murray LM, Shaheen R, Perkins E, Dissanayake KN, Kristaryanto Y, Jones RA, Vogt J, Rivagorda M, Handley MT, Mali GR, Quidwai T, Soares DC, Keighren MA, McKie L, Mort RL, Gammoh N, Garcia-Munoz A, Davey T, Vermeren M, Walsh D, Budd P, Aligianis IA, Faqeih E, Quigley AJ, Jackson IJ, Kulathu Y, Jackson M, Ribchester RR, von Kriegsheim A, Alkuraya FS, Woods CG, Maher ER, Mill P. PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins. Am J Hum Genet. 2017 May 4;100(5):706-724.

PubMed ID: 
28413018

Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy

Falik Zaccai TC, Savitzki D, Zivony-Elboum Y, Vilboux T, Fitts EC, Shoval Y, Kalfon L, Samra N, Keren Z, Gross B, Chasnyk N, Straussberg R, Mullikin JC, Teer JK, Geiger D, Kornitzer D, Bitterman-Deutsch O, Samson AO, Wakamiya M, Peterson JW, Kirtley ML, Pinchuk IV, Baze WB, Gahl WA, Kleta R, Anikster Y, Chopra AK. Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy. Brain. 2017 Feb;140(Pt 2):370-386.

PubMed ID: 
28007986

Marfan Lipodystrophy Syndrome

Clinical Characteristics
Ocular Features: 

The eyes are large resulting in high myopia and apparent proptosis.  The palpebral fissures usually slant downwards and ectopia lentis may be present.  

Systemic Features: 

This syndrome shares many features of Marfan syndrome (154700) such as tall stature, dislocated lenses, myopia, high arched palate, aortic root and valvular anomalies, arachnodactyly, high arched palate, lax and hyperextensible joints, and pectus excavatum.  In addition, MFLS patients have retrognathia, intrauterine growth retardation, scarce or absent subcutaneous fat, a progeroid facies, and sometimes macrocephaly.  Postnatal growth and psychomotor development have been reported to be normal albeit with slow weight gain.

Genetics

This condition is transmitted as an autosomal dominant as the result of heterozygous mutations in FBN1 (15q21.1).  The same gene is mutated in 6 other conditions in this database including Marfan Syndrome (154700) with which it shares some features.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no treatment for the overall condition but individual features such as ectopia lentis can be surgically corrected.  Patients with high myopia require frequent evaluation for retinal tears and detachments.  Cardiac monitoring likewise is important to monitor for aortic valve prolapse and dilation of the aortic root.

References
Article Title: 

Pontocerebellar Hypoplasia 3

Clinical Characteristics
Ocular Features: 

Optic atrophy is an inconsistent feature (sometimes even unilateral) of patients with PCH.  Cortical blindness has also been described.  There may be dysmorphic facial features such as wide palpebral fissures, epicanthal folds, and prominent eyes. 

Systemic Features: 

Infants are generally small and hypotonic at birth.  The skull is small and often brachycephalic.  The ears are large and low-set and  facial dysmorphism (full cheeks, long philtrum) is present.  Infants have poor head control and truncal ataxia.  Later, hyperreflexia and spasticity become evident.  Seizures are common.  Developmental delays, both somatic and mental, are nearly universal and large joint contractures are often seen. Many of these signs are progressive.  

Brain imaging generally reveals cerebral and cerebellar atrophy, a hypoplastic corpus callosum, a small cerebellar vermis, and a hypoplastic brainstem.  Short stature is a feature and early death often occurs.

Genetics

PCH3 is one of at least 10 syndromes belonging to a clinically and genetically heterogeneous group of conditions known as pontocerebellar hypoplasias.  Members of this group, while individually rare, nevertheless collectively account for a significant proportion of what was once labeled cerebral palsy.

PCH3 results from homozygous mutations in the PCLO gene (7q21). 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for the general disorder.

References
Article Title: 

Loss of PCLO function underlies pontocerebellar hypoplasia type III.

Ahmed MY, Chioza BA, Rajab A, Schmitz-Abe K, Al-Khayat A, Al-Turki S, Baple EL, Patton MA, Al-Memar AY, Hurles ME, Partlow JN, Hill RS, Evrony GD, Servattalab S, Markianos K, Walsh CA, Crosby AH, Mochida GH. Loss of PCLO function underlies pontocerebellar hypoplasia type III. Neurology. 2015 Apr 28;84(17):1745-50.

PubMed ID: 
25832664

Adrenoleukodystrophy, Autosomal

Clinical Characteristics
Ocular Features: 

This early onset and rapidly progressive form of adrenoleukodystrophy is rare.  The early onset and rapidly fatal course of the disease has limited full delineation of the ocular features.  The most striking is the presence of 'leopard-spots' pigmentary changes in the retina.  Polar cataracts, strabismus, and epicanthal folds have also been reported. 

Systemic Features: 

Onset of symptoms occurs shortly after birth often with seizures and evidence of psychomotor deficits.  Rapid neurologic deterioration begins at about 1 year of age with death usually by the age of 3 years.  Hyperpigmentation of the skin may be apparent a few months after birth.  Opisthotonus has been observed.  The ears may be low-set, the palate is highly arched, and the nostrils anteverted.  Frontal bossing may be present.  Serum pipecolic acid and very-long-chain fatty acids (VLCFAs) can be markedly elevated.  Cystic changes in the kidneys have been reported. 

Genetics

This is an autosomal recessive peroxismal disorder resulting from homozygous mutations in receptor gene mutations such as PEX1, PEX5, PEX13, and PEX26.

There is also an X-linked recessive adrenoleukodystrophy (300100) sometimes called ALD but it lacks some of the morphologic features and is somewhat less aggressive. 

Neonatal adrenoleukodystrophy along with infantile Refsum disease (266510, 601539) and Zellweger syndrome (214100) are now classified as Zellweger spectrum or perioxismal biogenesis disorders.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment is mainly supportive for associated health problems. 

References
Article Title: 

Homocystinuria, Beta-Synthase Deficiency

Clinical Characteristics
Ocular Features: 

More than half of patients have ectopia lentis by the age of 10 years and the dislocation is progressive.  Ectopia lentis occurs in 90% of patients and 94% of these are noted by the age of 20 years.  The lenses seem to be more mobile than those in Marfan syndrome with a significantly increased risk of lens migration into the anterior chamber (19%) or complete dislocation into the posterior chamber (14%).   Lens surgery is required in homocystinuria about 7 years earlier than in Marfan syndrome with 62% of procedures necessitated by pupillary block glaucoma or displacement into the anterior chamber.  Whereas nearly 70% of lenses dislocate superiorly in Marfan syndrome, only 9% of homocystinuria lenses do so.

Other ocular features include optic atrophy (23%), iris atrophy (21%), anterior staphylomas (13%) and corneal opacities (9%).  Retinal detachments occur in 5-10%.  The majority of patients both pre- and postoperatively have vision of 20/50 or worse.

Systemic Features: 

Arachnodactyly and tall stature in some patients may suggest Marfan syndrome.  Mental deficiencies or behavioral problems are present in a majority of patients (50-60%) with mental functioning higher in the subset of patients who are B6-responsive.  Thromboembolic events (strokes, myocardial infarctions) are a significant risk at any age, especially so after age 20 years, and this is responsible for considerable morbidity and mortality.  The risk is especially high following general anesthesia unless hydration is strictly controlled.  Osteoporosis and seizures are common.  Hypopigmentation is often present but darkening of hair has been noted following pyridoxine treatment.  Serum homocysteine is generally elevated and the urine contains elevated levels of methionine.

Genetics

Classic homocystinuria is an autosomal recessive disorder that results from mutations in the CBS (21q22.3) gene encoding cystathionine beta-synthase.  It is the second most common error of amino acid metabolism.  Numerous mutations have been identified but among the most common ones are I278T which causes a pyridoxine-responsive disorder, and the G3307S mutation which leads to a variant that is not responsive to pyridoxine treatment.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Patients with this disorder form two groups: those who respond to pyridoxine (vitamin B6) and those who do not.  Those who do not respond to B6 tend to have more severe disease.  Methionine restriction administered neonatally has been reported to prevent mental retardation and reduce the rate of lens dislocation.  Neonates should be treated with B6 therapy, protein and methionine restriction, betaine, and folate with vitamin B12 supplementation.  Surgical removal of lenses may be required but the rate of vitreous loss is high.

References
Article Title: 

Marfan Syndrome

Clinical Characteristics
Ocular Features: 

Marfan syndrome typically has skeletal, ocular and cardiovascular abnormalities.  The globe is elongated creating an axial myopia and increasing the risk of rhegmatogenous retinal detachments.  Ectopia lentis is, of course, the classical ocular feature and is often if not always congenital with some progression.  The lenses most frequently dislocate superiorly and temporally and dilating the pupils often reveals broken and retracted lens zonules.  Phacodenesis and iridodenesis are commonly present even in the absence of evident lens dislocations. Cataracts develop several decades earlier than in unaffected individuals. The cornea is generally several diopters flatter than normal and there is an increased risk of open angle glaucoma.  There is considerable clinical variation among patients.

Systemic Features: 

Patients with the Marfan phenotype are usually tall with disproportionately long limbs (dolichostenomelia) and digits (arachnodactyly).   Patients frequently have scoliosis or kyphoscoliosis.  The joints are lax and hyperflexible although contractures can also occur.  The sternum is often deformed, either as a pectus excavatum, or sometimes pectus carinatum.  The hard palate is high and narrow resulting in crowding of the teeth and maloccclusion.  The defect in fibrillin is responsible for the weakness in connective tissue that leads to frequent cardiac valve malfunction, especially insufficiency of the aortic valve resulting from aortic dilatation, tear, and rupture.  The latter is often life-threatening as aortic dissection can be fatal.  Mitral valve prolapse is seen as well.  Cardiovascular disease is primarily responsible for the shortened life expectancy in this disease, more pronounced among males.

Genetics

As many as 25% of cases are caused by new mutations, but familial cases usually follow an autosomal dominant pattern of inheritance.  Autosomal recessive inheritance is claimed for several individuals in a consanguineous Turkish family.  Mutations in the fibrillin-1 gene (FBN1) on chromosome 15 (15q21.1) are considered responsible for the typical phenotype.  The exact nature of the fibrillin defect is unknown but the result is a generalized weakness in connective tissue.

The same gene is mutant in the autosomal dominant form of the Weill-Marchesani syndrome (608328) which is allelic to the Marfan syndrome.

Mutations in FBN1 have also been found in cases with isolated autosomal dominant ectopia lentis (129600).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Isometric exercises such as weight lifting should be avoided as should contact sports in which blunt trauma to the chest may occur because of the weakened aortic wall due to cystic changes that predispose the athlete to aortic dissection.  A dislocated and/or cataractous lens may need to be removed from the visual axis, and, of course, periodic retinal examinations for retinal holes and retinal detachments should be made.   Beta-adrenergic blockade reduces the risk of aortic dilatation and improves survival.

Pravastatin has been reported to reduce aortic dilation in marfan mice.

References
Article Title: 

Pravastatin reduces marfan aortic dilation

McLoughlin D, McGuinness J, Byrne J, Terzo E, Huuskonen V, McAllister H, Black A, Kearney S, Kay E, Hill AD, Dietz HC, Redmond JM. Pravastatin reduces marfan aortic dilation. Circulation. 2011 Sep 13;124(11 Suppl):S168-73.

PubMed ID: 
21911808
Subscribe to RSS - high-arched palate