glaucoma

SHORT Syndrome

Clinical Characteristics
Ocular Features: 

Deeply set eyes are frequently noted and perhaps are a result of the lipodystrophy.  Anterior segment abnormalities resembling Rieger anomalies are often associated with congenital glaucoma. 

Systemic Features: 

There is considerable clinical heterogeneity.  The facial gestalt, however, is said to be characteristic.  These are: triangular progeroid facies with a prominent forehead, absence of facial fat, midface hypoplasia, and hypoplastic nasal alae.  Insulin resistance seems to be a consistent feature as well and nephrocalcinosis is common.  Serum and urinary calcium may be elevated even in infancy.

Teeth are late to erupt and bone age is delayed with shortness of stature the final result in many cases.  Joints are often hyperextensible.  A neurosensory hear loss has been found in some individuals.  Notably, developmental milestones are usually timely although mild cognitive delays are rarely seen and speech may be delayed.  Inguinal hernias are part of the syndrome. 

Genetics

Heterozygous mutations in the PIK3R1 gene (5q31.1) are responsible for this syndrome.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Serum and urinary calcium should be monitored.  The risk of glaucoma is high and patients should be monitored and treated appropriately.  Blood sugar and insulin levels may require treatment.  Inguinal hernias may require surgical repair.

References
Article Title: 

Mutations in PIK3R1 cause SHORT syndrome

Dyment DA, Smith AC, Alcantara D, Schwartzentruber JA, Basel-Vanagaite L, Curry CJ, Temple IK, Reardon W, Mansour S, Haq MR, Gilbert R, Lehmann OJ, Vanstone MR, Beaulieu CL; FORGE Canada Consortium., Majewski J, Bulman DE, O'Driscoll M, Boycott KM, Innes AM. Mutations in PIK3R1 cause SHORT syndrome. Am J Hum Genet. 2013 Jul 11;93(1):158-66. 

PubMed ID: 
23810382

Anterior Segment Dysgenesis 6

Clinical Characteristics
Ocular Features: 

This is a congenital anterior segment dysplasia syndrome.  Iris hypoplasia with transillumination, corectopia, iridodenesis, and iridocorneal adhesions can be seen.  Increased intraocular pressure is a risk and ectopia lentis is often present.  Peters anomaly and defects in all layers of the cornea may be present.

No foveal hypoplasia is present.

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

A single male patient of native American/French Canadian background has been reported with compound heterozygous mutations in the CYP1B1 gene (2p22.2).

See Anterior Chamber Dysgenesis 8 for another autosomal recessive disorder with somewhat similar clinical features.  Three families with 4 affected individuals have been reported with homozygous or compound heterozygous mutations in the CPAMD8 gene (19p13.11).

The genes FOXE3 and PAX6 are characterized as transcription factors and play important roles in ocular development.  However, while mutations in these are frequently found in patients with dysgenesis of the anterior chamber they often cause more widespread ocular and systemic anomalies (e.g., Gillespie syndrome [206700]).  Therefore in this database the anterior chamber constellations of anomalies associated with mutations in these genes are not considered to be simplex conditions.

See also related disorders iridogoniodysgenesis type 1 (601631) and type 2 (137600), and anterior segment mesenchymal dysgenesis (107250).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Lifelong pressure monitoring is important.

References
Article Title: 

Phenotypic heterogeneity of CYP1B1: mutations in a patient with Peters' anomaly

Vincent A, Billingsley G, Priston M, Williams-Lyn D, Sutherland J, Glaser T, Oliver E, Walter MA, Heathcote G, Levin A, Heon E. Phenotypic heterogeneity of CYP1B1: mutations in a patient with Peters' anomaly. J Med Genet. 2001 May;38(5):324-6. PubMed PMID: 11403040; PubMed Central PMCID: PMC1734880.

PubMed ID: 
11403040

Anterior Segment Dysgenesis 8

Clinical Characteristics
Ocular Features: 

This is a congenital anterior segment dysplasia syndrome with considerable clinical heterogeneity.  Iris hypoplasia with transillumination, corectopia, iridodenesis, and iridocorneal adhesions are often seen.  Intraocular pressure may be elevated in older individuals.  Ectopia lentis is often present.  Lenticular opacities consisting primarily of posterior cortical opacification are common.  Visual acuity varies from 6/6 to 6/24.

No foveal hypoplasia is present but one of four reported patients was described with bilateral optic nerve dysplasia.     

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

Three families with 4 affected individuals with similar clinical features have been reported with homozygous or compound heterozygous mutations in the CPAMD8 gene (19p13.11).

A single male patient of native American/French Canadian background with somewhat similar clinical features has been reported with compound heterozygous mutations in the CYP1B1 gene (2p22.2) but this is likely a unique condition (Anterior Segment Dysgenesis 6).

The genes FOXE3 and PAX6 are characterized as transcription factors and play important roles in ocular development.  However, while mutations in these are frequently found in patients with dysgenesis of the anterior chamber they often cause more widespread ocular and systemic anomalies (e.g., Gillespie syndrome [206700]).  Therefore in this database the anterior chamber constellations of anomalies associated with mutations in these genes are not considered to be simplex conditions. 

See also related disorders iridogoniodysgenesis type 1 (601631) and type 2 (137600), and anterior segment mesenchymal dysgenesis (107250).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Several patients have had cataract surgery.  Monitoring intraocular pressure throughout life is necessary and prompt treatment for glaucoma is important.

References
Article Title: 

Aniridia 3

Clinical Characteristics
Ocular Features: 

One 4-generation Chinese family with 8 affected members has been reported. Complete bilateral iris defects were seen all patients who by 10 years of age also had cataracts.  No corneal opacities were seen.  Two patients were diagnosed with glaucoma.  No fundus abnormalities were reported.

Systemic Features: 

No systemic abnormalities have been reported. 

Genetics

Hereditary aniridia results from a dysfunction of the regulatory gene PAX6.  In aniridia 1 (106210) the PAX6 gene (a transcription regulator) gene itself contains mutations.  In anirdia 2 (617141) the mutation occurs in the ELP4 gene, whose product is a cis-regulatory enhancer of PAX6

Aniridia 3 results from heterozygous mutations in the TRIM44 gene (11p13).  The TRIM44 gene is a negative regulator which normally suppresses the expression of PAX6 and the reported missense mutation (p.G155R) enhances its activity.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Surgical removal of cataracts and glaucoma treatment may be of benefit.

Axenfeld-Rieger Syndrome, Type 4

Clinical Characteristics
Ocular Features: 

The ocular features of this syndrome are similar to types 1-3 and primarily involve the anterior segment.  The iris stroma is hypoplastic and the pupil location may be eccentric.  Full thickness defects in the iris can lead to pseudopolycoria.   There may be anterior displacement of the angle structures with posterior embryotoxon and localized corneal opacification.    Glaucoma is a common feature and it may be present in early childhood, associated with tearing, a hazy cornea, and buphthalmos.  Vitreous condensation was noted in all 4 reported individuals.

Systemic Features: 

The midface is flat due to maxillary underdevelopment and the teeth may be abnormally small.  Micrognathia has been reported while the nasal root is abnormally broad.  The umbilical defect consists of redundant skin that failed to involute normally.  Congenital hip anomalies of undetermined nature and a hearing defect were reported in 2 of 4 individuals.

Genetics

Heterozygous mutations in the PRDM5 gene (4q25-q26) are responsible for this condition.  Mutations in CYP1b1, PITX2, and FOXC1 were not present.  One extended pedigree with 4 affected individuals from Pakistan has been reported. 

Type 1 Axenfeld-Rieger syndrome (180500) results from heterozygous mutations in PITX2RIEG2 (601499) from heterozygous mutations in 13q14, and RIEG3 (602482) from heterozygous mutations in the FOXC1 gene.  Thus in three types of Axenfeld-Rieger syndrome (1,3, and 4) the responsible mutation occurs in a transcription factor gene which may explain why the phenotype is highly variable with considerable overlap in clinical signs.

Autosomal recessive brittle cornea syndrome type 2 (614170) is also caused by mutations in the PRDM5 gene. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment is directed at correction of individual problems such as glaucoma and dental anomalies.  One patient required surgery for a retinal detachment. Lifelong ocular monitoring is recommended. 

References
Article Title: 

Anterior Segment, Brain, and Facial Anomalies

Clinical Characteristics
Ocular Features: 

The interpupillary distance appears abnormally wide.  VEP and ERG responses suggest abnormal retinal bipolar cells.  Specular microscopy reveals variable sizes and shapes of corneal endothelial cells with scattered vesicles and large 'holes' in the usual hexagonal array.  The iris may be malformed (no collarette, stromal hypoplasia) and there may be peripheral iridocorneal adhesions.  Elevated IOP, band keratopathy, corneal clouding, and keratoconus have been reported.  Visual acuity is impaired to some extent, from near normal (20/25) to NLP.  Progressive optic atrophy was observed in one patient.

Systemic Features: 

Four members of a 3 generation family had malformed pinnae (posterior placement and rotation).  Other features variably present were an empty sella turcica, posterior fossa cyst, and hydrocephalus. The propositus also was found to have abnormal auditory bipolar cells based on the audiogram and audio-evoked brainstem responses.

Genetics

Based on direct sequencing in one family (3 adults and 1 child), this condition seems to be caused by heterozygous variations or mutations in the VSX1 gene (20p11.21). 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Monitoring for glaucoma and appropriate treatment are indicated.  Hearing tests should be performed early.  The usual treatments for keratoconus should be considered.  Excess brain fluid may need surgical drainage.

.

References
Article Title: 

Singleton-Merten Syndrome 2

Clinical Characteristics
Ocular Features: 

Glaucoma has been diagnosed in multiple members of 4 a generation Korean family in which various features of this disorder were found.  The glaucoma is likely congenital in origin as it has been diagnosed in patients as young as 3 years of age

Systemic Features: 

Calcification of the aorta and other large vessels may be identified in childhood.  The aortic valve and coronary arteries may become calcified in young adults as well, sometimes resulting in aortic stenosis.  Arthritis resulting from calcified tendons as well as ligaments of the interphalangeal and metacarpophalangeal joints may occur in young adults.  The skin is often scaly and dry with psoriatic lesions.  The terminal tufts of the digits have evidence of erosion.

Genetics

Heterozygous mutations in the DDX58 gene (9p21.1) have been associated with this disorder.  Some of the clinical features overlap those of Singleton-Merten Syndrome 2 (182250) but this is a unique disorder caused by a different mutation (IFIH1).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Glaucoma should be treated with pressure-lowering drugs and surgery.  It may be possible to decalcify cardiovascular structures in select patients and to perform valve replacement.

References
Article Title: 

Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome

Jang MA, Kim EK, Now H, Nguyen NT, Kim WJ, Yoo JY, Lee J, Jeong YM, Kim CH, Kim OH, Sohn S, Nam SH, Hong Y, Lee YS, Chang SA, Jang SY, Kim JW, Lee MS, Lim SY, Sung KS, Park KT, Kim BJ, Lee JH, Kim DK, Kee C, Ki CS. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am J Hum Genet. 2015 Feb 5;96(2):266-74.

PubMed ID: 
25620203

Singleton-Merten Syndrome 1

Clinical Characteristics
Ocular Features: 

Several children have been diagnosed with glaucoma in early childhood or during puberty.  Glaucoma surgery has been beneficial in some but visual damage may be severe.

Systemic Features: 

Patients have early-onset calcifications of the aorta and of the aortic and mitral valves which may be seen in childhood and can be responsible for heart failure and early death.  Osteoporosis of the limbs and widened medullary cavities have been seen.  Abnormal bone mineralization and extends to the jaws leading to tooth loss and early-onset periodontal disease.  Eruption of both primary and permanent teeth is delayed but tooth roots can be truncated as well.  The hips dislocate easily due to shallow acetabulae and patients are susceptible to tendon tears.

Hypotonia and generalized weakness may be present which is sometimes exacerbated following a febrile illness.  The skin may be dry and scaly consistent with psoriasis and there may be photosensitivity.

The forehead is broad and prominent and the hairline is high and anterior.  The philtrum is smooth and the upper vermilion is thin.

Genetics

Heterozygous mutations in the IFIH1 gene (2q24.2) are responsible for this disorder.  Another form of Singleton-Merten Syndrome (SGMRT2; 609631) is the result of mutations in the DDX58 gene. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment is directed at specific problems such as fractures, glaucoma, and periodontal disease.

References
Article Title: 

A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome

Rutsch F, MacDougall M, Lu C, Buers I, Mamaeva O, Nitschke Y, Rice GI, Erlandsen H, Kehl HG, Thiele H, Nurnberg P, Hohne W, Crow YJ, Feigenbaum A, Hennekam RC. A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am J Hum Genet. 2015 Feb 5;96(2):275-82.

PubMed ID: 
25620204

Charcot-Marie-Tooth Disease(s)

Clinical Characteristics
Ocular Features: 

Optic atrophy is present in some patients, particularly in X-linked recessive (CMTX5; 311070), X-linked dominant (CMTX5; 302800), and autosomal recessive (CMT2A2B; 617087) disease.  Congenital and juvenile-onset open-angle glaucoma has been reported among members of 2 consanguineous families with type 4B2, or CMT4B2; (604563).  The mean age of onset was 8 years.

Systemic Features: 

Charcot-Marie-Tooth disease is a large group of clinically and genetically heterogeneous disorders characterized by progressive motor and sensory polyneuropathy.  These can be separated (with overlap) into two large groups on the basis of electrophysiologic criteria: type 1 is the demyelinating form, and type 2 the axonal form.  Patients with primarily distal motor neuropathy are sometimes considered to comprise a third type.

 Symptoms such as weakness in the extremities and digits have a variable age of onset but usually become evident in late childhood or early adulthood.  Small muscles of the hands and feet are often atrophied to some degree.  Some patients develop hearing loss of the neurosensory type.  Foot deformities such as pes cavus are common.  Nerve conduction velocity (reduction) and electromyography can be helpful diagnostically.  It may be helpful to look for characteristic changes such as loss of myelinated fibers and focal myelin sheath folding in sural nerve biopsies.  Intellectual impairment and dementia are usually not features of Charcot-Marie-Tooth disease.

Hemizygous individuals with X-linked types of CMT such as CMTX2-5 seem to be more likely to have intellectual disabilities, hearing loss, spasticity, and optic neuropathy.

Genetics

Charcot-Marie-Tooth disease can also be classified on the basis of their hereditary patterns including autosomal dominant, autosomal recessive, X-linked recessive, and X-linked dominant.  Each of these contains yet more distinct subtypes as defined by mutations in at least 40 genes.

The wide range of disease severity and the overlapping of many signs can make pedigree construction and the determination of recurrence risks and prognosis challenging.  The only recourse may be genotyping.

See Charcot-Marie-Tooth Disease with Glaucoma (604563) for a form of this disease in which glaucoma occurs early.

Pedigree: 
Autosomal dominant
Autosomal recessive
X-linked dominant, father affected
X-linked dominant, mother affected
X-linked recessive, carrier mother
X-linked recessive, father affected
Treatment
Treatment Options: 

The widespread and debilitating polyneuropathy requires a multidisciplinary management approach with neurologists, physical and occupational therapists, audiologists, pain specialists, and orthopedists.  Pharmaceuticals such as gabapentin may be used for neuropathic pain.  Surgery for pes cavus and joint dysplasias can be helpful.

References
Article Title: 

Charcot-Marie-Tooth disease

Carter GT, Weiss MD, Han JJ, Chance PF, England JD. Charcot-Marie-Tooth disease. Curr Treat Options Neurol. 2008 Mar;10(2):94-102.

PubMed ID: 
18334132

Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma

Azzedine H, Bolino A, Taieb T, Birouk N, Di Duca M, Bouhouche A, Benamou S, Mrabet A, Hammadouche T, Chkili T, Gouider R, Ravazzolo R, Brice A, Laporte J, LeGuern E. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am J Hum Genet. 2003 May;72(5):1141-53.

PubMed ID: 
12687498

Retinal Nonattachment, Congenital

Clinical Characteristics
Ocular Features: 

The common denominator in this condition is, of course, congenital nonattachment of the retina.  Many eyes are small as well.  Some patients in addition have a vascularized hyperplastic vitreous and often present with blindness and a congenital leukocoria.  Many at some stage have lens opacification, as well as glaucoma and anterior chamber anomalies including anterior synechiae and some degree of corneal opacification.  These signs are often progressive beginning in childhood.  Pendular nystagmus and esotropia are common.  MRI studies reveal optic nerves and the chiasm that are either absent or abnormally small.

Systemic Features: 

This condition is nonsyndromic and has no systemic abnormalities.

Genetics

Congenital retinal nonattachment consists of a group of sometimes familial conditions for which no responsible gene has been identified.  In a genomic study of 21 consanguineous NCRNA Pakistani families 3 had mutations in ATOH7 and 10 had mutations in familial exudative vitreoretinopathy genes.  Genotyping did not reveal associated mutations in the remaining 38% of these families. It is likely that multiple entities are represented but until the molecular etiologies are identified, no more specific classification is possible.

Studies in mice document that the Atoh7 gene is important to retinal ganglion cell neurogenesis.  In humans, both autosomal recessive PHPV and congenital nonattachment of the retina are associated with microsatellite linkage and haplotype matching to a region at 10q21 adjacent to the ATOH7 gene but so far no causative mutation has been found in this region.  However, studies in large consanguineous kindreds in which a deleted DNA segment adjacent to ATOH7 segregated with the NCRNA phenotype suggest that a transcription regulator may be at fault in the timing and level of ATOH7 expression.

The disorder known as persistent hyperplastic primary vitreous is generally not considered hereditary since it usually occurs unilaterally and sporadically.  It is sometimes found in association with a number of syndromal conditions as well.  However, it has also been reported in familial patterns consistent with both autosomal recessive and autosomal dominant patterns.  DNA mapping of individuals with bilateral disease found in a consanguineous Pakistani kindred with presumed autosomal recessive disease suggests that a locus at 10q11-q21 may be responsible.

Evidence for autosomal dominant inheritance of persistent hyperplastic primary vitreous comes from rare families with an apparent vertical transmission of the condition.

Congenital nonattachment of the retina is also seen in the osteoporosis-pseudoglioma syndrome (250770).  However, this is a syndromal disorder with neurologic and joint disease in addition to porotic, thin, fragile bones (sometimes called the ocular form of osteogenesis imperfecta) resulting from mutations in LRP5 on chromosome 11.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

With rare exceptions, the retina cannot be reattached successfully and phthisis with blindness is the usual outcome.

References
Article Title: 

Pages

Subscribe to RSS - glaucoma