facial dysmorphism

Mental Retardation, AD 57

Clinical Characteristics
Ocular Features: 

Ptosis, strabismus, epicanthal folds, and upslanting lid fissures are often present but there is considerable variation among individuals.  Blepharophimosis, telecanthus, and various refractive errors have also been reported.

Systemic Features: 

There is great variability in the clinical signs among patients.  Most have developmental delays and intellectual disabilities combined with behavioral challenges such as anxiety, obsessive-compulsive disorders and features of autism spectrum disorders.  

Infants and young children may have feeding difficulties but may later develop constipation or diarrhea.  

Skeletal anomalies such as short stature, high palate, craniosynostosis, scoliosis, pes planus, hand contractures, and joint hypermobility have been reported.  The voice may be hoarse.

Genetics

Heterozygous mutations in the TLK2 gene (17q23) are responsible for this condition.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

De Novo and Inherited Loss-of-Function Variants in TLK2: Clinical and Genotype-Phenotype Evaluation of a Distinct Neurodevelopmental Disorder

Reijnders MRF, Miller KA, Alvi M, Goos JAC, Lees MM, de Burca A, Henderson A, Kraus A, Mikat B, de Vries BBA, Isidor B, Kerr B, Marcelis C, Schluth-Bolard C, Deshpande C, Ruivenkamp CAL, Wieczorek D; Deciphering Developmental Disorders Study, Baralle D, Blair EM, Engels H, Ludecke HJ, Eason J, Santen GWE, Clayton-Smith J, Chandler K, Tatton-Brown K, Payne K, Helbig K, Radtke K, Nugent KM, Cremer K, Strom TM, Bird LM, Sinnema M, Bitner-Glindzicz M, van Dooren MF, Alders M, Koopmans M, Brick L, Kozenko M, Harline ML, Klaassens M, Steinraths M, Cooper NS, Edery P, Yap P, Terhal PA, van der Spek PJ, Lakeman P, Taylor RL, Littlejohn RO, Pfundt R, Mercimek-Andrews S, Stegmann APA, Kant SG, McLean S, Joss S, Swagemakers SMA, Douzgou S, Wall SA, Kury S, Calpena E, Koelling N, McGowan SJ, Twigg SRF, Mathijssen IMJ, Nellaker C, Brunner HG, Wilkie AOM. De Novo and Inherited Loss-of-Function Variants in TLK2: Clinical and Genotype-Phenotype Evaluation of a Distinct Neurodevelopmental Disorder. Am J Hum Genet. 2018 Jun 7;102(6):1195-1203.

PubMed ID: 
29861108

Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability

Lelieveld SH, Reijnders MR, Pfundt R, Yntema HG, Kamsteeg EJ, de Vries P, de Vries BB, Willemsen MH, Kleefstra T, Lohner K, Vreeburg M, Stevens SJ, van der Burgt I, Bongers EM, Stegmann AP, Rump P, Rinne T, Nelen MR, Veltman JA, Vissers LE, Brunner HG, Gilissen C. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat Neurosci. 2016 Sep;19(9):1194-6.

PubMed ID: 
27479843

Al Kaissi Syndrome

Clinical Characteristics
Ocular Features: 

Reported facial dysmorphism features include periocular anomalies of ptosis, hypertelorism, down-slanting lid fissures, and epicanthal folds.  

Systemic Features: 

The phenotype is somewhat variable.  Intrauterine and postnatal growth retardation with hypotonia are common.   Moderate to severe intellectual disability is usually present and speech may be severely delayed.  The forehead is narrow, the nasal tip is broad, the nasal bridge is depressed, and the ears are low-set and posteriorly rotated.   Small hands and sometimes joint laxity are commonly present.  Cervical spine abnormalities including clefting, improper fusion, and segmentation anomalies are common.

Brain MRI may be normal but a small corpus callosum was present in some patients.

Genetics

Homozygous mutations in the CDK10 gene (16q24.3) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

CDK10 Mutations in Humans and Mice Cause Severe Growth Retardation, Spine Malformations, and Developmental Delays

Windpassinger C, Piard J, Bonnard C, Alfadhel M, Lim S, Bisteau X, Blouin S, Ali NB, Ng AYJ, Lu H, Tohari S, Talib SZA, van Hul N, Caldez MJ, Van Maldergem L, Yigit G, Kayserili H, Youssef SA, Coppola V, de Bruin A, Tessarollo L, Choi H, Rupp V, Roetzer K, Roschger P, Klaushofer K, Altmuller J, Roy S, Venkatesh B, Ganger R, Grill F, Ben Chehida F, Wollnik B, Altunoglu U, Al Kaissi A, Reversade B, Kaldis P. CDK10 Mutations in Humans and Mice Cause Severe Growth Retardation, Spine Malformations, and Developmental Delays. Am J Hum Genet. 2017 Sep 7;101(3):391-403.

PubMed ID: 
28886341

Spastic Paraplegia, Intellectual Disability, Nystagmus, and Obesity

Clinical Characteristics
Ocular Features: 

Patients have deep-set eyes with nystagmus, reduced vision, and often an esotropia perhaps secondary to hypermetropia.  In one of 3 reported patients the optic discs were described pale.

Systemic Features: 

Prominent foreheads are present at birth along with full cheeks and a prominent forehead.  Children grow rapidly in the first year eventually reaching the 90th percentiles in weight, height, and head circumference although neurologically they are developmentally delayed.  Speech and walking may be delayed as well.  While limbs have increased tone together with hyperreflexia, the trunk exhibits hypotonia.

Brain imaging reveals delayed myelination, dilated lateral ventricles, reduced while matter, and cerebral atrophy.

Genetics

Heterozygous mutations in the KIDINS220 gene (2p25.1) have been identified in 3 unrelated patients.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Heterozygous KIDINS220/ARMS nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity

Josifova DJ, Monroe GR, Tessadori F, de Graaff E, van der Zwaag B, Mehta SG; DDD Study., Harakalova M, Duran KJ, Savelberg SM, Nijman IJ, Jungbluth H, Hoogenraad CC, Bakkers J, Knoers NV, Firth HV, Beales PL, van Haaften G, van Haelst MM. Heterozygous KIDINS220/ARMS nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity. Hum Mol Genet. 2016 Jun 1;25(11):2158-2167.

PubMed ID: 
27005418

Intellectual Disability with Dysmorphic Facies and Ptosis

Clinical Characteristics
Ocular Features: 

The eyes appear widely spaced and the lid fissures slant downward.  Ptosis and blepharophimosis are present.  Strabismus is an uncommon feature.

Systemic Features: 

The characteristic facial profile (round, flat) is evident at birth. Microcephaly has been seen in some children.  Low birthweight is common.  Most infants feed poorly with general growth delay and short stature becoming evident in childhood.  Hypotonia and joint hypermobility are constant features.  Gross and fine motor movements appear uncoordinated.  Expressive language is delayed and impaired.  Intellectual disability is mild and achievement of developmental milestones may be delayed.  Seizures are seen in about half of affected individuals.  Brain MRIs may reveal mild white matter anomalies.  Spinal fusion among cervical vertebrae is common.

Individuals may live to adulthood.

Genetics

Heterozygous mutations in the BRPF1 gene (3p25) are responsible for this condition.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No effective treatment has been reported.

References
Article Title: 

Mutations in Histone Acetylase Modifier BRPF1 Cause an Autosomal-Dominant Form of Intellectual Disability with Associated Ptosis

Mattioli F, Schaefer E, Magee A, Mark P, Mancini GM, Dieterich K, Von Allmen G, Alders M, Coutton C, van Slegtenhorst M, Vieville G, Engelen M, Cobben JM, Juusola J, Pujol A, Mandel JL, Piton A. Mutations in Histone Acetylase Modifier BRPF1 Cause an Autosomal-Dominant Form of Intellectual Disability with Associated Ptosis. Am J Hum Genet. 2017 Jan 5;100(1):105-116.

PubMed ID: 
27939639

Mutations in the Chromatin Regulator Gene BRPF1 Cause Syndromic Intellectual Disability and Deficient Histone Acetylation

Yan K, Rousseau J, Littlejohn RO, Kiss C, Lehman A, Rosenfeld JA, Stumpel CT, Stegmann AP, Robak L, Scaglia F, Nguyen TT, Fu H, Ajeawung NF, Camurri MV, Li L, Gardham A, Panis B, Almannai M, Sacoto MJ, Baskin B, Ruivenkamp C, Xia F, Bi W; DDD Study.; CAUSES Study., Cho MT, Potjer TP, Santen GW, Parker MJ, Canham N, McKinnon M, Potocki L, MacKenzie JJ, Roeder ER, Campeau PM, Yang XJ. Mutations in the Chromatin Regulator Gene BRPF1 Cause Syndromic Intellectual Disability and Deficient Histone Acetylation. Am J Hum Genet. 2017 Jan 5;100(1):91-104.

PubMed ID: 
27939640

Meester-Loeys Syndrome

Clinical Characteristics
Ocular Features: 

A variety of nondiagnostic facial features are present at birth including hypertelorism, downward slanting lid fissures, proptosis, frontal bossing, and midface hypoplasia.

Systemic Features: 

Aortic aneurysms with or without dissection have been diagnosed as early as 1 year of age but may not be apparent until teenage years.  Pectus deformities, joint hypermobility, and skin striae may be seen. Hypertrichosis, evidence of skeletal dysplasia such as hip dislocation, platyspondyly, phalangeal dysplasia, joint hypermobility, relative macrocephaly, dysplastic epiphyses of the long bones, and cervical spine instability are often present.

Genetics

This X-linked disorder is caused by a mutation in the BGN gene (Xp28).  No male-to-male transmission has been reported although both sexes are affected.

Pedigree: 
X-linked dominant, mother affected
Treatment
Treatment Options: 

Individual deformities might be surgically repaired.

References
Article Title: 

Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections

Meester JA, Vandeweyer G, Pintelon I, Lammens M, Van Hoorick L, De Belder S, Waitzman K, Young L, Markham LW, Vogt J, Richer J, Beauchesne LM, Unger S, Superti-Furga A, Prsa M, Dhillon R, Reyniers E, Dietz HC, Wuyts W, Mortier G, Verstraeten A, Van Laer L, Loeys BL. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet Med. 2016 Sep 15. doi: 10.1038/gim.2016.126. [Epub ahead of print].

PubMed ID: 
27632686

Rubinstein-Taybi Syndrome 2

Clinical Characteristics
Ocular Features: 

Highly-arched and bushy eyebrows are often seen.  The lashes are long and bushy and lid fissures tend to slope downward.

The ocular phenotype has not been fully described no doubt due to the rarity of cases.  Individuals with type 1 (RSTS1) have been described with congenital glaucoma, nystagmus, corneal abnormalities of shape (such as keratoglobus, sclerocornea, megalocornea), pigmentary retinopathy, and VEP evidence of rod and cone dysfunction have been described.

Systemic Features: 

The phenotype of RSTS2 is more variable than the somewhat similar RSTS1.  Less than 10% of individuals with Rubinstein-Taybi syndrome have type 2 while over 50% have type 1.  The facial dysmorphism nay be less severe in RSTS2.

Mild to moderate intellectual disability with psychosocial problems such as autism is nearly universal.  Microcephaly, a broad nasal bridge, a beaked nose, high-arched palate and some degree of micrognathia are characteristic.  The lower lip often appears 'pouty' and protrudes beyond the upper lip while the hard palate is highly arched.  Pregnancy may be complicated by pre-eclampsia and growth restriction.  Swallowing and feeding issues are common.  Syndactyly is often present and there is considerable variability in the size of the toes and thumbs.  Some patients with RSTS2 do not have evidence of the classic broad thumbs and toes characteristic of RSTS1.

Genetics

Heterozygous mutations in EP300 (22q13.2) have been found in this condition.  Virtually all cases occur de novo.  Rubinstein-Taybi Syndrome 1 (180849) is a phenotypically similar disorder resulting from a different mutation (CREBBP).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no treatment for this condition.

References
Article Title: 

Hypotonia, Infantile, with Psychomotor Retardation and Characteristic Facies 3

Clinical Characteristics
Ocular Features: 

Deep-set eyes with highly arched eyebrows have been described and poor fixation can be present.  Cortical visual impairment has been described.

Systemic Features: 

The neurologic abnormalities become evident soon after birth.  Hypotonia and decreased reflexes may be present early and often there is little psychomotor development subsequently.  Some patients have no or very little speech and may never sit, stand, or walk.  However, there is considerable variation in the clinical picture and other individuals are able to walk and may live into the third decade.  Brain imaging reveals a variety of abnormalities including cerebellar and cerebral hypoplasia.  Respiratory difficulties and poor feeding are often present.

The facial dysmorphism may include brachycephaly with a broad forehead and narrowing of the temporal regions.  The nose may be small and the mouth appears large in the presence of micrognathia and a thin upper lip.

Genetics

This is an autosomal recessive condition as the result of homozygous or compound heterozygous mutations in the TBCK gene (4q24). 

Other similar conditions include IHPRF2 (616801) (with homozygous mutations in UNC80 and IHPRF1 (615419) (with homozygous mutations in NALCN) whose ocular features may include strabismus, nystagmus, and poor visual fixation.    

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Mutations in TBCK, Encoding TBC1-Domain-Containing Kinase, Lead to a Recognizable Syndrome of Intellectual Disability and Hypotonia

Bhoj EJ, Li D, Harr M, Edvardson S, Elpeleg O, Chisholm E, Juusola J, Douglas G, Guillen Sacoto MJ, Siquier-Pernet K, Saadi A, Bole-Feysot C, Nitschke P, Narravula A, Walke M, Horner MB, Day-Salvatore DL, Jayakar P, Vergano SA, Tarnopolsky MA, Hegde M, Colleaux L, Crino P, Hakonarson H. Mutations in TBCK, Encoding TBC1-Domain-Containing Kinase, Lead to a Recognizable Syndrome of Intellectual Disability and Hypotonia. Am J Hum Genet. 2016 Apr 7;98(4):782-8.

PubMed ID: 
27040691

Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy

Chong JX, Caputo V, Phelps IG, Stella L, Worgan L, Dempsey JC, Nguyen A, Leuzzi V, Webster R, Pizzuti A, Marvin CT, Ishak GE, Ardern-Holmes S, Richmond Z; University of Washington Center for Mendelian Genomics, Bamshad MJ, Ortiz-Gonzalez XR, Tartaglia M, Chopra M, Doherty D. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy. Am J Hum Genet. 2016 Apr 7;98(4):772-81.

PubMed ID: 
27040692

Spondyloocular Syndrome

Clinical Characteristics
Ocular Features: 

Cataracts have been noted in several patients in the first and second decades of life.  Nystagmus and ‘amblyopia’ have also been reported.  Several individuals have had retinal detachments.

Systemic Features: 

Only a small number of families have been reported.  Poor bone mineralization with frequent fractures in long bones and vertebral compression seem to be consistent features often noted in the first and second decades of life.  Moderate osteoporosis and advanced bone age with platyspondyly may be present.  The vertebral fractures lead to abnormal spinal curvature and may result in shortened stature. 

Some sensorineural hearing loss is sometimes detected in the first decade.  The ears have been described as low-set and posteriorly rotated.  A variety of cardiac defects have been reported including mitral valve prolapse, septal defects, and anomalies of the aortic valve. 

Genetics

This is an autosomal recessive disorder secondary to homozygous mutations in the XYLT2 gene located at 17q21.33. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Pamidronate given intravenously seems to have little therapeutic value.  Hearing aids can be beneficial.  Lensectomy may be of benefit although no reports of cataract surgery have been reported.  Fractures need immediate attention.  Patient may become wheelchair-bound by the second decade.  Special education may be helpful for those with learning difficulties.

References
Article Title: 

Gracile Bone Dysplasia

Clinical Characteristics
Ocular Features: 

The eyes have been described as small.  Aniridia may be present.

Systemic Features: 

This is a usually fatal form of skeletal dysplasia with splenic and ocular features as well.  In utero death is not uncommon while newborns may not survive the neonatal period.  The face has been described as dysmorphic with a high forehead, flat nasal bridge, a cloverleaf-shaped skull, and hypoplastic cranial bones with premature suture closure.  The long bones are dysplastic as well with thinned diaphyses (sometimes fractured in utero), growth plate disorganization, excessive remodeling, and signs of arrested growth.  The ribs share in the dysplasia but pulmonary hypoplasia has also been described.  Most individuals have short limbs.

The spleen can be hypoplastic or aplastic and ascites has been noted in several infants.  Failure to thrive is common and seizures have been reported.  Males may have micropenis and hypospadias while females have been described with labial fusion.  

Low parathyroid hormone levels and hypocalcemia has been reported in most individuals.

Genetics

Heterozygous mutations in the FAM111A gene (11q12.1) have been associated with this disorder.  The functional role of FAM111A products is unknown but likely play a role in calcium metabolism, parathyroid hormone secretion, and osseous development.

Mutations in the same gene can be responsible for the allelic autosomal dominant Kenny-Caffey syndrome (127000) with some similar features.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

FAM111A mutations result in hypoparathyroidism and impaired skeletal development

Unger S, Gorna MW, Le Bechec A, Do Vale-Pereira S, Bedeschi MF, Geiberger S, Grigelioniene G, Horemuzova E, Lalatta F, Lausch E, Magnani C, Nampoothiri S, Nishimura G, Petrella D, Rojas-Ringeling F, Utsunomiya A, Zabel B, Pradervand S, Harshman K, Campos-Xavier B, Bonafe L, Superti-Furga G, Stevenson B, Superti-Furga A. FAM111A mutations result in hypoparathyroidism and impaired skeletal development. Am J Hum Genet. 2013 Jun 6;92(6):990-5.

PubMed ID: 
23684011

Anterior Segment, Brain, and Facial Anomalies

Clinical Characteristics
Ocular Features: 

The interpupillary distance appears abnormally wide.  VEP and ERG responses suggest abnormal retinal bipolar cells.  Specular microscopy reveals variable sizes and shapes of corneal endothelial cells with scattered vesicles and large 'holes' in the usual hexagonal array.  The iris may be malformed (no collarette, stromal hypoplasia) and there may be peripheral iridocorneal adhesions.  Elevated IOP, band keratopathy, corneal clouding, and keratoconus have been reported.  Visual acuity is impaired to some extent, from near normal (20/25) to NLP.  Progressive optic atrophy was observed in one patient.

Systemic Features: 

Four members of a 3 generation family had malformed pinnae (posterior placement and rotation).  Other features variably present were an empty sella turcica, posterior fossa cyst, and hydrocephalus. The propositus also was found to have abnormal auditory bipolar cells based on the audiogram and audio-evoked brainstem responses.

Genetics

Based on direct sequencing in one family (3 adults and 1 child), this condition seems to be caused by heterozygous variations or mutations in the VSX1 gene (20p11.21). 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Monitoring for glaucoma and appropriate treatment are indicated.  Hearing tests should be performed early.  The usual treatments for keratoconus should be considered.  Excess brain fluid may need surgical drainage.

.

References
Article Title: 

Pages

Subscribe to RSS - facial dysmorphism