delayed speech

Myopathy, Mitochondrial Anomalies, and Ataxia

Clinical Characteristics
Ocular Features: 

Ocular findings are variable.  One of three individuals with compound heterozygous mutations had a pigmentary retinopathy with pallor of the optic nerve but no visual abnormalities.  Her sister had only optic nerve pallor.  The eyes are described as "small" and "close-set".

No ocular findings were reported for the family with autosomal dominant inheritance.

Systemic Features: 

Ataxia, short stature, and gait difficulties from an early age are consistent findings.  Some patients are never able to walk.  Motor development is generally delayed.  Truncal and limb ataxia is a feature.  Some degree of intellectual disability is generally present and speech is often delayed.  

The face is long with a myopathic appearance.  Both micrognathia and a prominent jaw may be seen.  The palate is highly arched.  Patients are described as hypotonic and there is generalized muscle weakness both proximal and distal.  Distal sensory impairment has been described in the family with presumed dominant inheritance and there may be psychiatric symptoms of anxiety, depression, and schizophrenia.  Dysmetria with dysdiadochokinesis is often present and a fine intention tremor has been observed.

Mitochondria in fibroblasts exhibit abnormal dynamics and occur in a fragmented network.  Muscle biopsies reveal changes consistent with myopathy.  Serum creatine kinase may be elevated.

Genetics

Compound heterozygous mutations in the MSTO1 gene (1q22) have been found in two families with 3 affected individuals suggesting autosomal recessive inheritance.  In a third family, heterozygous mutations in the same gene were found in a mother and 3 of her adult children, consistent with autosomal dominant transmission.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Al Kaissi Syndrome

Clinical Characteristics
Ocular Features: 

Reported facial dysmorphism features include periocular anomalies of ptosis, hypertelorism, down-slanting lid fissures, and epicanthal folds.  

Systemic Features: 

The phenotype is somewhat variable.  Intrauterine and postnatal growth retardation with hypotonia are common.   Moderate to severe intellectual disability is usually present and speech may be severely delayed.  The forehead is narrow, the nasal tip is broad, the nasal bridge is depressed, and the ears are low-set and posteriorly rotated.   Small hands and sometimes joint laxity are commonly present.  Cervical spine abnormalities including clefting, improper fusion, and segmentation anomalies are common.

Brain MRI may be normal but a small corpus callosum was present in some patients.

Genetics

Homozygous mutations in the CDK10 gene (16q24.3) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

CDK10 Mutations in Humans and Mice Cause Severe Growth Retardation, Spine Malformations, and Developmental Delays

Windpassinger C, Piard J, Bonnard C, Alfadhel M, Lim S, Bisteau X, Blouin S, Ali NB, Ng AYJ, Lu H, Tohari S, Talib SZA, van Hul N, Caldez MJ, Van Maldergem L, Yigit G, Kayserili H, Youssef SA, Coppola V, de Bruin A, Tessarollo L, Choi H, Rupp V, Roetzer K, Roschger P, Klaushofer K, Altmuller J, Roy S, Venkatesh B, Ganger R, Grill F, Ben Chehida F, Wollnik B, Altunoglu U, Al Kaissi A, Reversade B, Kaldis P. CDK10 Mutations in Humans and Mice Cause Severe Growth Retardation, Spine Malformations, and Developmental Delays. Am J Hum Genet. 2017 Sep 7;101(3):391-403.

PubMed ID: 
28886341

Spastic Paraplegia, Intellectual Disability, Nystagmus, and Obesity

Clinical Characteristics
Ocular Features: 

Patients have deep-set eyes with nystagmus, reduced vision, and often an esotropia perhaps secondary to hypermetropia.  In one of 3 reported patients the optic discs were described pale.

Systemic Features: 

Prominent foreheads are present at birth along with full cheeks and a prominent forehead.  Children grow rapidly in the first year eventually reaching the 90th percentiles in weight, height, and head circumference although neurologically they are developmentally delayed.  Speech and walking may be delayed as well.  While limbs have increased tone together with hyperreflexia, the trunk exhibits hypotonia.

Brain imaging reveals delayed myelination, dilated lateral ventricles, reduced while matter, and cerebral atrophy.

Genetics

Heterozygous mutations in the KIDINS220 gene (2p25.1) have been identified in 3 unrelated patients.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Heterozygous KIDINS220/ARMS nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity

Josifova DJ, Monroe GR, Tessadori F, de Graaff E, van der Zwaag B, Mehta SG; DDD Study., Harakalova M, Duran KJ, Savelberg SM, Nijman IJ, Jungbluth H, Hoogenraad CC, Bakkers J, Knoers NV, Firth HV, Beales PL, van Haaften G, van Haelst MM. Heterozygous KIDINS220/ARMS nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity. Hum Mol Genet. 2016 Jun 1;25(11):2158-2167.

PubMed ID: 
27005418

Retinitis Pigmentosa 71

Clinical Characteristics
Ocular Features: 

Night blindness is noted in the first or second decades of life.  The fundus picture in this condition resembles classic retinitis pigmentosa with attenuated vessels, RPE anomalies with bone spicule clumping and areas of atrophy, and optic disc pallor.  Several patients had optic nerve drusen.  The retina appears to have microcysts, especially in the macula, and the outer retina is thinned.  

Systemic Features: 

Only a few patients have been reported with this form of RP and the full phenotype is unknown.  Some individuals are obese and one patient in addition had postaxial polydactyly and hypercholesterolemia suggestive of a Bardet-Biedl-like phenotype.  No reported patients have had rib dysplasia.

Genetics

Homozygous or compound heterozygous mutations in the IFT172 gene (2p23.3) have been identified in this condition.

The same gene is mutated in the recessive short-rib thoracic dysplasia 10 syndrome with or without polydactyly (615630).  Individuals with the short-rib syndrome may have night blindness and fundus changes resembling retinitis pigmentosa.

Because of the phenotypic overlap with other conditions such as Bardet-Biedl syndrome, the short-rib thoracic 10 syndrome (615630), Majewski syndrome (263520), Jeune syndrome (208520), short-rib thoracic dysplasia 9 (266920), and certain types of polycystic diseases of the kidney with abnormalities of the cilia, it has been suggested that RP71 should be classified as a syndromic ciliopathy.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome

Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, Consugar M, Lancelot ME, Antonio A, Lonjou C, Carpentier W, Mohand-Said S, den Hollander AI, Cremers FP, Leroy BP, Gai X, Sahel JA, van den Born LI, Collin RW, Zeitz C, Audo I, Pierce EA. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum Mol Genet. 2015 Jan 1;24(1):230-42.

PubMed ID: 
25168386
Subscribe to RSS - delayed speech