cleft palate

Sweeney-Cox Syndrome

Clinical Characteristics
Ocular Features: 

 Periorbital and facial anomalies were present in the two reported patients.  Pseudoproptosis (considered secondary to deficiency of the bony orbits) accentuated by midface hypoplasia, and upper lid colobomas have been observed.  The globes were described as "small" although there were no "concerns" regarding vision in the single male patient.  Electrodiagnostic tests were "normal."    

Systemic Features: 

Multiple anomalies and malformations were present in the two reported patients, an unrelated male and female.  Severe facial dysmorphism secondary to uneven skull bone formation and suture closures is present.  The metopic ridge is prominent, the orbital bones are deficient, the occiput is flattened, the anterior fontanel and coronal sutures are wide.  Midfacial hypoplasia is present.  The neck is broad and the shoulders are narrow.  The fingers are long and the distal phalanges may be fixed in flexion.  The ears are low-set, small, and cupped.  The palate is high and may be cleft.  Cutaneous syndactyly of the fingers has been observed.  Variable developmental delays/learning difficulties are present.

The male had an imperforate anus, undescended testes and a 60 dB hearing loss.  The female had a midline cleft palate with choanal atresia requiring a tracheostomy from birth and required fundoplication and gastrostomy for gastroesophageal reflux.

Genetics

Heterozygous missense mutations in the TWIST1 gene (7p21.1) were found in both reported individuals.  These appear to have arisen de novo.

Mutations in the same gene have also been found in the Saethre-Chotzen Syndrome (101400) in which some of the same skeletal features are found.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported for the general condition but individual malformations may require attention.  The lid colobomas were repaired in the female but corneal exposure remained and corneal scarring and phthisis developed in the right eye.  The left eye retained some vision ("able to see large objects").

References
Article Title: 

Localized TWIST1 and TWIST2 basic domain substitutions cause four distinct human diseases that can be modeled in Caenorhabditis elegans

Kim S, Twigg SRF, Scanlon VA, Chandra A, Hansen TJ, Alsubait A, Fenwick AL, McGowan SJ, Lord H, Lester T, Sweeney E, Weber A, Cox H, Wilkie AOM, Golden A, Corsi AK. Localized TWIST1 and TWIST2 basic domain substitutions cause four distinct human diseases that can be modeled in Caenorhabditis elegans. Hum Mol Genet. 2017 Jun 1;26(11):2118-2132.

PubMed ID: 
28369379

Diagnostic value of exome and whole genome sequencing in craniosynostosis

Miller KA, Twigg SR, McGowan SJ, Phipps JM, Fenwick AL, Johnson D, Wall SA, Noons P, Rees KE, Tidey EA, Craft J, Taylor J, Taylor JC, Goos JA, Swagemakers SM, Mathijssen IM, van der Spek PJ, Lord H, Lester T, Abid N, Cilliers D, Hurst JA, Morton JE, Sweeney E, Weber A, Wilson LC, Wilkie AO. Diagnostic value of exome and whole genome sequencing in craniosynostosis. J Med Genet. 2017 Apr;54(4):260-268.

PubMed ID: 
27884935

Sweeney-Cox Syndrome

Clinical Characteristics
Ocular Features: 

Ophthalmologic examinations have not been reported.  However, periorbital and facial anomalies were present in the two reported patients.  Pseudoproptosis (considered secondary to deficiency of the bony orbits) accentuated by midface hypoplasia, and upper lid colobomas have been observed.  The globes were described as "small" although there were no "concerns" regarding vision in the single male patient.  Electrodiagnostic tests were "normal."    

Systemic Features: 

Multiple anomalies and malformations were present in the two reported patients, an unrelated male and female.  Severe facial dysmorphism secondary to uneven skull bone formation and suture closures is present.  The metopic ridge is prominent, the orbital bones are deficient, the occiput is flattened, the anterior fontanel and coronal sutures are wide.  Midfacial hypoplasia is present.  The neck is broad and the shoulders are narrow.  The fingers are long and the distal phalanges may be fixed in flexion.  The ears are low-set, small, and cupped.  The palate is high and may be cleft.  Cutaneous syndactyly of the fingers has been observed.  Variable developmental delays/learning difficulties are present.

The male had an imperforate anus, undescended testes and a 60 dB hearing loss.  The female had a midline cleft palate with choanal atresia requiring a tracheostomy from birth and required fundoplication and gastrostomy for gastroesophageal reflux.  

Genetics

Heterozygous missense mutations in the TWIST1 gene (7p21.1) were found in both reported individuals.  These appear to have arisen de novo.

Mutations in the same gene have also been found in the Saethre-Chotzen Syndrome (101400) in which some of the same skeletal features are found.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported for the general condition but individual malformations may require attention.  The lid colobomas were repaired in the female but corneal exposure remained and corneal scarring and phthisis developed in the right eye.  The left eye retained some vision ("able to see large objects").

References
Article Title: 

Localized TWIST1 and TWIST2 basic domain substitutions cause four distinct human diseases that can be modeled in Caenorhabditis elegans

Kim S, Twigg SRF, Scanlon VA, Chandra A, Hansen TJ, Alsubait A, Fenwick AL, McGowan SJ, Lord H, Lester T, Sweeney E, Weber A, Cox H, Wilkie AOM, Golden A, Corsi AK. Localized TWIST1 and TWIST2 basic domain substitutions cause four distinct human diseases that can be modeled in Caenorhabditis elegans. Hum Mol Genet. 2017 Jun 1;26(11):2118-2132.

PubMed ID: 
28369379

Diagnostic value of exome and whole genome sequencing in craniosynostosis

Miller KA, Twigg SR, McGowan SJ, Phipps JM, Fenwick AL, Johnson D, Wall SA, Noons P, Rees KE, Tidey EA, Craft J, Taylor J, Taylor JC, Goos JA, Swagemakers SM, Mathijssen IM, van der Spek PJ, Lord H, Lester T, Abid N, Cilliers D, Hurst JA, Morton JE, Sweeney E, Weber A, Wilson LC, Wilkie AO. Diagnostic value of exome and whole genome sequencing in craniosynostosis. J Med Genet. 2017 Apr;54(4):260-268.

PubMed ID: 
27884935

Blepharocheilodontic Syndrome 2

Clinical Characteristics
Ocular Features: 

The eyelids are disproportionately large with ectropion of the lower lid.  There is often a duplicate row of lashes (distichiasis) and there may be lagophthalmos and euryblepharon present.  Hypertelorism has been described. 

Systemic Features: 

The teeth are often conical and some may be absent.  Cleft lip and palate are often present.  The forehead is prominent and the frontal hairline is posteriorly located.

Genetics

Heterozygous mutations in the CTNND1 gene (11q12.1) are responsible for this condition.

Blepharocheilodontic syndrome 1 results from heterozygous mutations in the CDH1 gene (16q22.1).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment consists of surgical repair of dental, eyelid, and oral defects.

References
Article Title: 

Carey-Fineman-Ziter Syndrome

Clinical Characteristics
Ocular Features: 

Abnormal eye movements with prominent external ophthalmoplegia are hallmarks of this disease.  An oculomotor nerve palsy with limited abduction and some degree of facial palsy are usually present.  The Moebius sequence is present in many patients.  Epicanthal folds, downslanting lid fissures, and ptosis are frequently seen.

Systemic Features: 

Clinical signs are highly variable.  Unusual facies with features of the Pierre Robin complex are characteristic.  Micrognathia and retrognathia are often present with glossoptosis.  Hypotonia and failure to thrive are commonly seen.  Dysphagia and even absent swallowing likely contribute to this.  Respiratory insufficiency can be present from birth, often with laryngostenosis, and some patients develop pulmonary hypertension and restrictive lung disease as adults.  Progressive scoliosis may contribute to this.  Many patients have club feet with joint contractures.  Skull formation consisting of microcephaly, or macrocephaly, or plagiocephaly is commonly seen.  Cardiac septal defects are common.

Intellectual disability is present in some but not all individuals.  Neuronal heterotopias, enlarged ventricles, reduced white matter, a small brainstem, microcalcifications, and enlarged ventricles have been observed.

Genetics

Homozygous or compound heterozygosity of the MYMK gene (9q34) is responsible for this condition.  

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment for the general disorder has been reported.

References
Article Title: 

A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome

Di Gioia SA, Connors S, Matsunami N, Cannavino J, Rose MF, Gilette NM, Artoni P, de Macena Sobreira NL, Chan WM, Webb BD, Robson CD, Cheng L, Van Ryzin C, Ramirez-Martinez A, Mohassel P, Leppert M, Scholand MB, Grunseich C, Ferreira CR, Hartman T, Hayes IM, Morgan T, Markie DM, Fagiolini M, Swift A, Chines PS, Speck-Martins CE, Collins FS, Jabs EW, Bonnemann CG, Olson EN; Moebius Syndrome Research Consortium, Carey JC, Robertson SP, Manoli I, Engle EC. A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome. Nat Commun. 2017 Jul 6;8:16077. doi: 10.1038/ncomms16077.

PubMed ID: 
28681861

Möbius sequence, Robin complex, and hypotonia: severe expression of brainstem disruption spectrum versus Carey-Fineman-Ziter syndrome

Verloes A, Bitoun P, Heuskin A, Amrom D, van de Broeck H, Nikkel SM, Chudley AE, Prasad AN, Rusu C, Covic M, Toutain A, Moraine C, Parisi MA, Patton M, Martin JJ, Van Thienen MN. Mobius sequence, Robin complex, and hypotonia: severe expression of brainstem disruption spectrum versus Carey-Fineman-Ziter syndrome. Am J Med Genet A. 2004 Jun 15;127A(3):277-87.

PubMed ID: 
15150779

3MC Syndromes

Clinical Characteristics
Ocular Features: 

The major ocular features involve the periocular structures.  These result in the typical facial dysmorphism and include hypertelorism, blepharoptosis, blepharophimosis, and highly arched eyebrows. Ptosis, unilateral or bilateral, can be present.

One patient was reported to have unilateral aniridia and a corneal leucoma.  Tear duct atresia was reported in another individual.

Systemic Features: 

Systemic features are highly variable in their presence and severity.   Facial clefting, growth deficiency, cognitive impairment, and hearing loss are present about half the time in some combination while craniosynostosis, urogenital anomalies, and radioulnar synostosis are seen in about a third of individuals.  More rare features include cardiac defects and abdominal midline defects (omphalocele and diastasis recti).

Genetics

This condition (3MC) is now postulated to include at least 3 disorders (Malpuech-Michels-Mingarelli-Carnevale syndromes) and considered here as a single autosomal recessive disease complex with overlapping clinical features that requires genotyping for diagnostic separation.  These are: 3MC1 syndrome (257920) resulting from homozygous mutations in the MASP1 gene (3q27.3), 3MC2 syndrome (265050) caused by mutations in the COLEC11 gene (2p25.3) and 3MC3 (248340) with mutations in the COLEC10 gene (8q24.12).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective general treatment has been reported.

References
Article Title: 

COLEC10 is mutated in 3MC patients and regulates early craniofacial development

Munye MM, Diaz-Font A, Ocaka L, Henriksen ML, Lees M, Brady A, Jenkins D, Morton J, Hansen SW, Bacchelli C, Beales PL, Hernandez-Hernandez V. COLEC10 is mutated in 3MC patients and regulates early craniofacial development. PLoS Genet. 2017 Mar 16;13(3):e1006679. doi: 10.1371/journal.pgen.1006679. eCollection 2017 Mar.

PubMed ID: 
28301481

Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome

Rooryck C, Diaz-Font A, Osborn DP, Chabchoub E, Hernandez-Hernandez V, Shamseldin H, Kenny J, Waters A, Jenkins D, Kaissi AA, Leal GF, Dallapiccola B, Carnevale F, Bitner-Glindzicz M, Lees M, Hennekam R, Stanier P, Burns AJ, Peeters H, Alkuraya FS, Beales PL. Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat Genet. 2011 Mar;43(3):197-203.

PubMed ID: 
21258343

Bosma Arhinia Microphthalmia Syndrome

Clinical Characteristics
Ocular Features: 

Microphthalmia or clinical anophthalmia are usually present.  Iris colobomas are frequent features.  Occluded or absent nasolacrimal ducts have been reported.

Systemic Features: 

Arhina with anosmia is the most striking feature but it is usually accompanied by midface hypoplasia, a highly arched (or cleft) palate, and preauricular pits.  The nasal bones along with the cribriform plate, and other septal structures may be missing.  Maxillary and paranasal sinuses, together with the olfactory bulbs are often absent.  Intelligence is usually normal.

Choanal atresia is often present.  Hypogonadotropic hypogonadism with micropenis and cryptorchidism is an important feature in males.  Females may experience pubertal delay with menarche anomalies.  

Genetics

Heterozygous mutations in the SMCHD1 gene (18p11) are responsible for this disorder.  There is considerable clinical heterogeneity with many carriers having only minor manifestations.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment for the general disorder has been described.

References
Article Title: 

De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

Gordon CT, Xue S, Yigit G, Filali H, Chen K, Rosin N, Yoshiura KI, Oufadem M, Beck TJ, McGowan R, Magee AC, Altmuller J, Dion C, Thiele H, Gurzau AD, Nurnberg P, Meschede D, Muhlbauer W, Okamoto N, Varghese V, Irving R, Sigaudy S, Williams D, Ahmed SF, Bonnard C, Kong MK, Ratbi I, Fejjal N, Fikri M, Elalaoui SC, Reigstad H, Bole-Feysot C, Nitschke P, Ragge N, Levy N, Tuncbilek G, Teo AS, Cunningham ML, Sefiani A, Kayserili H, Murphy JM, Chatdokmaiprai C, Hillmer AM, Wattanasirichaigoon D, Lyonnet S, Magdinier F, Javed A, Blewitt ME, Amiel J, Wollnik B, Reversade B. De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development. Nat Genet. 2017 Feb;49(2):249-255.

PubMed ID: 
28067911

Cleft Palate, Psychomotor Retardation, and Distinctive Facial Features

Clinical Characteristics
Ocular Features: 

The facial dysmorphism is present at birth together with the cleft palate.  Downslanting lid fissures, widely spaced eyes, and ptosis may be present.  Eyebrows have been described as sparse in one patient.  Strabismus and ocular apraxia are present in some children. 

Systemic Features: 

Three patients have been reported, one of whom also had a second deletion in a gene implicated in the Kabuki syndrome.  This individual had hypertrichosis and synophyrys whereas the others had sparse eyebrow and temporal hair.  The teeth are malformed with some conically shaped and widely spaced.  The forehead is prominent and the fingers are tapered and brachydactylous with 5th finger clinodactyly.

There are significant delays in achieving developmental milestones.  Hypotonia has been described.  Speech and walking in particular may be delayed for several years.   Physical growth may be delayed as well.  A variety of brain anomalies have been seen in some but not all individuals.  Hypospadius and cryptorchidism have been described.  All children reported have palatal anomalies.

Genetics

Heterozygous mutations in the KDM1A gene have been identified in two patients.  In another report a single patient had an out-of-frame 3-nucleotide deletion in the ANKRD11 gene (as sometimes found in Kabuki syndrome) plus a mutation in the KDM1A gene. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features

Chong JX, Yu JH, Lorentzen P, Park KM, Jamal SM, Tabor HK, Rauch A, Saenz MS, Boltshauser E, Patterson KE, Nickerson DA, Bamshad MJ. Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features. Genet Med. 2015 Dec 10. doi: 10.1038/gim.2015.161. [Epub ahead of print].

PubMed ID: 
26656649

Vici Syndrome

Clinical Characteristics
Ocular Features: 

Congenital cataracts, both unilateral and bilateral are common.  The fundus appears hypopigmented. Nystagmus, optic neuropathy, and mild ptosis have been reported.  Nothing is known regarding acuity. 

Systemic Features: 

Infants at birth have striking hypotonia with a weak cry and feeding difficulties.  Dysmorphic features such as micrognathia, microcephaly, low-set ears, some degree of generalized hypopigmentation (hair and skin), and a broad nose with a long philtrum may be present. The face may appear triangular.  Cleft lip and palate may be present.  Evidence of cardiac dysfunction may also be present early with both dilated and hypertrophic cardiomyopathy reported.  Hearing loss has been reported in some individuals.  Recurrent infections are common and immunologic studies have revealed, in some patients, granulocytopenia, low T cell counts (primarily T4+ cells), thymic dysplasia, and low levels of IgG.  Seizures may occur.  Liver dysfunction has been variably reported.

Neurological and brain evaluations have reported agenesis of the corpus callosum, defects in the septum pellucidum, and hypoplasia of the cerebellar vermis along with pontocerebellar hypoplasia.  Psychomotor retardation is severe in most individuals along with general growth retardation.

Histologic studies of skeletal muscle fibers have shown considerable variation in fiber size, centralized nuclei, fucsinophilic inclusions, and enlarged abnormal mitochondria.  Other central nervous system abnormalities include in some individuals a paucity of white matter, schizencephaly, neuronal heterotopias, and enlargement of the ventricles.

The cumulative effects of these multiorgan abnormalities lead to death within the first year or two of life, generally of heart failure or sepsis. 

Genetics

Homozygous or compound heterozygous mutations in the EPG5 gene (18q12.3) have been associated with this condition.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Vici syndrome: a

Byrne S, Dionisi-Vici C, Smith L, Gautel M, Jungbluth H. Vici syndrome: a
review
. Orphanet J Rare Dis. 2016 Feb 29;11(1):

PubMed ID: 
4772338

Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy

Cullup T, Kho AL, Dionisi-Vici C, Brandmeier B, Smith F, Urry Z, Simpson MA, Yau S, Bertini E, McClelland V, Al-Owain M, Koelker S, Koerner C, Hoffmann GF, Wijburg FA, ten Hoedt AE, Rogers RC, Manchester D, Miyata R, Hayashi M, Said E, Soler D, Kroisel PM, Windpassinger C, Filloux FM, Al-Kaabi S, Hertecant J, Del Campo M, Buk S, Bodi I, Goebel HH, Sewry CA, Abbs S, Mohammed S, Josifova D, Gautel M, Jungbluth H. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet. 2013 Jan;45(1):83-7.

PubMed ID: 
23222957

Mandibulofacial Dysostosis with Alopecia

Clinical Characteristics
Ocular Features: 

The extensive dysplasia of the facial bones involves those of the orbital rims and zygomatic arches.  The orbital rims can be malformed and there is often a broad depression at the inferolateral region of the eyes.  Hypoplasia or even aplasia of the eyelids maybe present and some individuals have colobomas of the lower eyelids.  The lacrimal punctae may be temporally displaced.  The eyebrows and eyelashes are often sparse as part of the generalized alopecia.

Systemic Features: 

This is a disorder of craniofacial development resulting in extensive malformations of facial bones and skin.  Different rates of development among these structures leads to facial asymmetry in many patients. Maxillary, zygomatic arch, and mandibular bones are dysplastic resulting in micrognathia and a flat midface.   The temporomandibular joints are absent and the external ear canals are often incompletely formed.  Conductive hearing loss is common with hypoplastic ossicular chains while the pinnae are low-set, crumpled and abnormally cupped.  There may be preauricular tags or pits present.  Tooth eruption is often delayed and there may be agenesis of many permanent teeth.  The maxillary sinuses may be absent.  Cleft palate is often present.

Genetics

Heterozygous mutations in the EDNRA gene (4q31) are responsible for this condition.  No familial cases have been reported and it can be assumed that the mutations arise de novo. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no treatment for the overall condition but individual anomalies such as the colobomas, dental deformities and cleft palate may be surgically repaired.  Upper airway obstruction may require tracheostomy in infants.

References
Article Title: 

Mutations in the endothelin receptor type A cause mandibulofacial dysostosis with alopecia

Gordon CT, Weaver KN, Zechi-Ceide RM, Madsen EC, Tavares AL, Oufadem M, Kurihara Y, Adameyko I, Picard A, Breton S, Pierrot S, Biosse-Duplan M, Voisin N, Masson C, Bole-Feysot C, Nitschke P, Delrue MA, Lacombe D, Guion-Almeida ML, Moura PP, Garib DG, Munnich A, Ernfors P, Hufnagel RB, Hopkin RJ, Kurihara H, Saal HM, Weaver DD, Katsanis N, Lyonnet S, Golzio C, Clouthier DE, Amiel J. Mutations in the endothelin receptor type A cause mandibulofacial dysostosis with alopecia. Am J Hum Genet. 2015 Apr 2;96(4):519-31.

PubMed ID: 
25772936

Basel-Vanagaite-Smirin-Yosef Syndrome

Clinical Characteristics
Ocular Features: 

The eyes appear abnormally far apart.  Ptosis, microcornea, congenital cataracts, sparse eyebrows, and strabismus are usually present.  Epicanthal folds are often seen.

Systemic Features: 

Psychomotor development is severely delayed and with delay or absence of milestones.  DTRs are often hyperactive but some infants are described as hypotonic.  Some individuals have seizures.  There may be a nevus flammeus simplex lesion on the forehead and body hair is sparse.  Cleft palate, cardiac septal defects, hypospadius, thin corpus callosum and cerebral ventricular dilation have been observed.  The upper lip may have a tented morphology with everted lower lip vermilion. A short philtrum is common. 

Genetics

A homozygous missense mutation in the MED25 gene (19q13.33) has been reported and the transmission pattern is consistent with autosomal recessive inheritance.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No known treatment has been reported.

References
Article Title: 

Homozygous MED25 mutation implicated in eye-intellectual disability syndrome

Basel-Vanagaite L, Smirin-Yosef P, Essakow JL, Tzur S, Lagovsky I, Maya I, Pasmanik-Chor M, Yeheskel A, Konen O, Orenstein N, Weisz Hubshman M, Drasinover V, Magal N, Peretz Amit G, Zalzstein Y, Zeharia A, Shohat M, Straussberg R, Monte D, Salmon-Divon M, Behar DM. Homozygous MED25 mutation implicated in eye-intellectual disability syndrome. Hum Genet. 2015 Jun;134(6):577-87.

PubMed ID: 
25792360

Pages

Subscribe to RSS - cleft palate