brachydactyly

Retinitis Pigmentosa With or Without Skeletal Anomalies

Clinical Characteristics
Ocular Features: 

Downward slanting lid fissures may be detectable at birth as part of the general craniofacial dysmorphism.  Some degree of night blindness causes symptoms by the second decade of life and constricted visual fields with pigmented retinopathy and vessel narrowing can be detected.  The ERG shows reduced or absent responses.  The retinal phenotype is progressive.   

Systemic Features: 

Most but not all patients have skeletal anomalies.  Nonspecific craniofacial dysmorphology features are frequently present including frontal bossing, macrocephaly, low-set ears, large columella, hypoplastic nares, and malar hypoplasia.  A short neck, brachydactyly, and overall shortness of stature are often present.  Some individuals have nail dysplasia.  The proximal femoral metaphyses sometimes show chondrodysplasia.

There is often some degree of intellectual disability and there may be delays in speech, feeding, and walking.

Genetics

This disorder results from homozygous or compound heterozygous mutations in the CWC27 gene (5q12.3).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No general treatment has been reported.  Low vision aids and night vision devices may be helpful, especially for educational activities.

References
Article Title: 

Mutations in the Spliceosome Component CWC27 Cause Retinal Degeneration with or without Additional Developmental Anomalies

Xu M, Xie YA, Abouzeid H, Gordon CT, Fiorentino A, Sun Z, Lehman A, Osman IS, Dharmat R, Riveiro-Alvarez R, Bapst-Wicht L, Babino D, Arno G, Busetto V, Zhao L, Li H, Lopez-Martinez MA, Azevedo LF, Hubert L, Pontikos N, Eblimit A, Lorda-Sanchez I, Kheir V, Plagnol V, Oufadem M, Soens ZT, Yang L, Bole-Feysot C, Pfundt R, Allaman-Pillet N, Nitschke P, Cheetham ME, Lyonnet S, Agrawal SA, Li H, Pinton G, Michaelides M, Besmond C, Li Y, Yuan Z, von Lintig J, Webster AR, Le Hir H, Stoilov P; UK Inherited Retinal Dystrophy Consortium., Amiel J, Hardcastle AJ, Ayuso C, Sui R, Chen R, Allikmets R, Schorderet DF. Mutations in the Spliceosome Component CWC27 Cause Retinal Degeneration with or without Additional Developmental Anomalies. Am J Hum Genet. 2017 Apr 6;100(4):592-604.

PubMed ID: 
28285769

Cataracts, Congenital, With Short Stature and Minor Skeletal Anomalies

Clinical Characteristics
Ocular Features: 

Early-onset cataracts are the main ocular feature of this syndrome.  A nonconsanguineous Korean family with 4 affected individuals has been reported.  Cataracts were diagnosed at various ages, including one adult, one juvenile, and one infant.  All had horizontal nystagmus and reduced vision even after surgical removal of the lenses.  

Systemic Features: 

Macrocephaly and short stature are consistent features.  Brachydactyly of the fingers is usually present.  The feet are described as "flat" and contain accessory navicular bones.

Genetics

A 3 generation Korean family with 4 affected members has been reported.  Three living members and a deceased grandfather had cataracts in an autosomal dominant pattern.  A mutation in the BRD4 gene (19p12.12) mutation segregated with the cataract phenotype.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Surgical removal of the cataractous lenses may be helpful in selected individuals but amblyopia is likely present as postoperative vision may remain below normal.

References
Article Title: 

Cleft Palate, Psychomotor Retardation, and Distinctive Facial Features

Clinical Characteristics
Ocular Features: 

The facial dysmorphism is present at birth together with the cleft palate.  Downslanting lid fissures, widely spaced eyes, and ptosis may be present.  Eyebrows have been described as sparse in one patient.  Strabismus and ocular apraxia are present in some children. 

Systemic Features: 

Three patients have been reported, one of whom also had a second deletion in a gene implicated in the Kabuki syndrome.  This individual had hypertrichosis and synophyrys whereas the others had sparse eyebrow and temporal hair.  The teeth are malformed with some conically shaped and widely spaced.  The forehead is prominent and the fingers are tapered and brachydactylous with 5th finger clinodactyly.

There are significant delays in achieving developmental milestones.  Hypotonia has been described.  Speech and walking in particular may be delayed for several years.   Physical growth may be delayed as well.  A variety of brain anomalies have been seen in some but not all individuals.  Hypospadius and cryptorchidism have been described.  All children reported have palatal anomalies.

Genetics

Heterozygous mutations in the KDM1A gene have been identified in two patients.  In another report a single patient had an out-of-frame 3-nucleotide deletion in the ANKRD11 gene (as sometimes found in Kabuki syndrome) plus a mutation in the KDM1A gene. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features

Chong JX, Yu JH, Lorentzen P, Park KM, Jamal SM, Tabor HK, Rauch A, Saenz MS, Boltshauser E, Patterson KE, Nickerson DA, Bamshad MJ. Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features. Genet Med. 2015 Dec 10. doi: 10.1038/gim.2015.161. [Epub ahead of print].

PubMed ID: 
26656649

Short-Rib Thoracic Dysplasia 9

Clinical Characteristics
Ocular Features: 

A pigmentary retinopathy resembling retinitis pigmentosa is present in the majority of individuals.  Reduced acuity is likely responsible for the associated nystagmus and occasional strabismus.  Night blindness is a feature although the age of onset is unknown.  Visual acuity is decreased in the first decade but at least one patient at age 40 years still had vision of 20/40-20/50.  The ERG shows decreased scotopic and photopic responses as early as 12 years of age.  The retinopathy has been described as an atypical nonpigmented retinal degeneration in the peripheral retina. However, bone-spicule pigmentary deposits have been noted.  The retinal disease is progressive. 

Systemic Features: 

The LFT140 mutation has widespread effects, impacting the kidney, liver and skeletal systems.  The thorax is shortened, while the ribs are abnormally short and may result in respiratory difficulties, recurrent infections, and an early demise.  The middle phalanges of the hands and feet often have cone-shaped epiphyses, especially notable in childhood and leading to brachydactyly.  The long bones are often shortened as well.  The femoral neck can be short while the femoral epiphyses are often flattened.  Microcephaly has been reported in several individuals.

The liver may be enlarged and become fibrotic.  The kidneys often are cystic and histologically may have sclerosing glomerulonephropathy.  Kidney disease has an onset in the first decade and its progression often defines the survival prognosis.  Renal transplantation can be lifesaving when nephronophthisis develops.  Psychomotor delays have been reported but are uncommon. 

Genetics

Homozygous or compound heterozygous mutations in the LFT140 gene (16p13.3) have been identified.  However, there is some genetic heterogeneity since several patients having the typical phenotype have been reported with only heterozygous mutations.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for the general disease.  Renal and pulmonary function needs to be monitored with intervention as needed.  Some patients have benefitted from renal transplantation.

References
Article Title: 

Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease

Schmidts M, Frank V, Eisenberger T, Al Turki S, Bizet AA, Antony D, Rix S, Decker C, Bachmann N, Bald M, Vinke T, Toenshoff B, Di Donato N, Neuhann T, Hartley JL, Maher ER, Bogdanovic R, Peco-Antic A, Mache C, Hurles ME, Joksic I, Guc-Scekic M, Dobricic J, Brankovic-Magic M, Bolz HJ, Pazour GJ, Beales PL, Scambler PJ, Saunier S, Mitchison HM, Bergmann C. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease. Hum Mutat. 2013 May;34(5):714-24.

PubMed ID: 
23418020

Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations

Perrault I, Saunier S, Hanein S, Filhol E, Bizet AA, Collins F, Salih MA, Gerber S, Delphin N, Bigot K, Orssaud C, Silva E, Baudouin V, Oud MM, Shannon N, Le Merrer M, Roche O, Pietrement C, Goumid J, Baumann C, Bole-Feysot C, Nitschke P, Zahrate M, Beales P, Arts HH, Munnich A, Kaplan J, Antignac C, Cormier-Daire V, Rozet JM. Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet. 2012 May 4;90(5):864-70.

PubMed ID: 
22503633

Gracile Bone Dysplasia

Clinical Characteristics
Ocular Features: 

The eyes have been described as small.  Aniridia may be present.

Systemic Features: 

This is a usually fatal form of skeletal dysplasia with splenic and ocular features as well.  In utero death is not uncommon while newborns may not survive the neonatal period.  The face has been described as dysmorphic with a high forehead, flat nasal bridge, a cloverleaf-shaped skull, and hypoplastic cranial bones with premature suture closure.  The long bones are dysplastic as well with thinned diaphyses (sometimes fractured in utero), growth plate disorganization, excessive remodeling, and signs of arrested growth.  The ribs share in the dysplasia but pulmonary hypoplasia has also been described.  Most individuals have short limbs.

The spleen can be hypoplastic or aplastic and ascites has been noted in several infants.  Failure to thrive is common and seizures have been reported.  Males may have micropenis and hypospadias while females have been described with labial fusion.  

Low parathyroid hormone levels and hypocalcemia has been reported in most individuals.

Genetics

Heterozygous mutations in the FAM111A gene (11q12.1) have been associated with this disorder.  The functional role of FAM111A products is unknown but likely play a role in calcium metabolism, parathyroid hormone secretion, and osseous development.

Mutations in the same gene can be responsible for the allelic autosomal dominant Kenny-Caffey syndrome (127000) with some similar features.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

FAM111A mutations result in hypoparathyroidism and impaired skeletal development

Unger S, Gorna MW, Le Bechec A, Do Vale-Pereira S, Bedeschi MF, Geiberger S, Grigelioniene G, Horemuzova E, Lalatta F, Lausch E, Magnani C, Nampoothiri S, Nishimura G, Petrella D, Rojas-Ringeling F, Utsunomiya A, Zabel B, Pradervand S, Harshman K, Campos-Xavier B, Bonafe L, Superti-Furga G, Stevenson B, Superti-Furga A. FAM111A mutations result in hypoparathyroidism and impaired skeletal development. Am J Hum Genet. 2013 Jun 6;92(6):990-5.

PubMed ID: 
23684011

Pseudohypoparathyroidism, Type 1A

Clinical Characteristics
Ocular Features: 

Cataracts and nystagmus are sometimes present.  Optic neuritis and papilledema have been reported and can result in optic atrophy.  The combination of cataracts and swelling of the optic nerves in children requires evaluation for hypocalcemia.

Systemic Features: 

The title refers to a group of conditions that have organ resistance to parathyroid hormone.  The phenotype is variable since there usually is a usually some degree of end-organ resistance to other hormones such as gonadotropins and TSH as in the PHP1A disorder described here.  The grouped clinical features are often referred to as Albright hereditary oseodystrophy or AHO.

Short stature with a short neck, a round face, chubby cheeks, and a depressed nasal bridge are usually present.  There may be cognitive deficits and some patients are considered to be mentally retarded.  The fourth and fifth metacarpals and sometimes metatarsals are characteristically short.   The teeth are late to erupt and can have an enamel deficit.  End organ resistance to other hormones may lead to signs of hypothyroidism and hypogonadism.  Calcification of subcutaneous tissues can result in palpable hard nodules and calcium deposition in basal ganglia and choroidal plexus may be demonstrable.  Some patients experience hypocalcemic tetany and seizures.  Hypocalcemia and hyperphosphatemia are often present along with elevated serum parathyroid hormone levels.

Genetics

This transmission pattern is likely modified by the effects of imprinting which also can modify the phenotype.  Mutltigenerational family patterns have an excess of maternal transmission.  The full phenotype is more likely expressed among maternally transmitted cases whereas partial or incomplete expression is more often seen among individuals who received the paternal allele. 

Heterozygous muttions in the GNAS1 gene (20q13.32) plays a role in this disease.  Signal transduction failure likely plays a major role in the failure of organs to respond to the appropriate hormone.

Several subtypes of pseudohypoparathyroidism have been reported but some do not have ocular signs.  However, type 1C (612462) patients can have cataracts and nystagmus with an almost identical phenotype to that of IA and may be the same condition.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment focuses on normalization of calcium and phosphate serum levels.  A deficiency of vitamin D should also be corrected and has been reported to correct at least some of the lens opacities.  Cataract removal can be considered.

References
Article Title: 

Acrofacial Dysostosis, Cincinnati Type

Clinical Characteristics
Ocular Features: 

The periocular features are part of the general facial dysmorphism.  The lid fissures slant downward, and the orbits appear inferiorly displaced.  'Clefts' (colobomas?) of the lower eyelids and sometimes the upper may be evident.  The medial eyelashes were absent in one patient. 

Systemic Features: 

The extraocular features reported so far are based on only three patients and there is considerable variation.  The head is usually small and patients may be short in stature.  The zygomatic arches, the maxillae and the mandibles are hypoplastic as is the midface.  There may be anotia and severe conductive hearing loss.  The pinnae can be large and are sometimes low-set.  Inconsistent short limbs with hip dysplasia and femoral bowing have been reported.  Brachydactyly is also a feature.

Genetics

Heterozygous mutations in the POLR1A gene (2p11) seem to be responsible for this condition.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is available for the overall condition but individual anomalies such as lid 'clefts' can be surgically repaired. Severe micrognathia may require tracheostomy at birth.

References
Article Title: 

Neu-Laxova Syndrome 1

Clinical Characteristics
Ocular Features: 

The globes are prominent, an appearance that is exaggerated sometimes by absence of the eyelids or ectropion.  The lashes may be absent in other patients.  Cloudy corneas and cataracts have been described.

Systemic Features: 

This is a lethal dysplasia-malformation syndrome in which some infants are stillborn while others do not live beyond a few days.  The placenta is often small and the umbilical cord is short.  Decreased fetal movements and polyhydramnios are often noted.  Microcephaly can be striking at birth but there is overall intrauterine growth retardation.  The skin is ichthyotic and dysplastic containing excess fatty tissue beneath the epidermis.  Digits are often small and may be fused (syndactyly).  There is generalized edema with ‘puffiness’ of the hands and feet.  The lungs are frequently underdeveloped and cardiac defects such as septal openings, patent ductus arteriosus and transposition of great vessels are common.  Males often have cryptorchidism while females have a bifid uterus and renal dysgenesis has been reported.

The face is dysmorphic with prominent globes (in spite of microphthalmia), the ears are large and malformed, the forehead is sloping, the nose is flattened and the jaw is small.  Some infants have a cleft lip and palate while the mouth is round and gaping.  The neck is usually short.

Severe brain malformations such as lissencephaly, cerebellar hypoplasia, and dysgenesis/agenesis of the corpus callosum are frequently present.

Genetics

This is an autosomal recessive disorder secondary to mutations in the PHGDH gene (1p12).

This condition has some clinical overlap with Neu-Laxova syndrome 2 (616038) but the latter is less severe and is caused by a different mutation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway

Acuna-Hidalgo R, Schanze D, Kariminejad A, Nordgren A, Kariminejad MH, Conner P, Grigelioniene G, Nilsson D, Nordenskjold M, Wedell A, Freyer C, Wredenberg A, Wieczorek D, Gillessen-Kaesbach G, Kayserili H, Elcioglu N, Ghaderi-Sohi S, Goodarzi P, Setayesh H, van de Vorst M, Steehouwer M, Pfundt R, Krabichler B, Curry C, MacKenzie MG, Boycott KM, Gilissen C, Janecke AR, Hoischen A, Zenker M. Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am J Hum Genet. 2014 Sep 4;95(3):285-93.

PubMed ID: 
25152457

Gurrieri Syndrome

Clinical Characteristics
Ocular Features: 

Tapetoretinal degeneration has been described in several patients.  Some patients have keratoconus with lens and corneal opacities.  Visual acuities have not been reported.  The full ocular phenotype must be considered unknown since most patients have not had full ophthalmic evaluations.

Systemic Features: 

Features of an osteodysplasia are among the most striking in this syndrome.  Short stature, brachydactyly, delayed bone age, osteoporosis, and hypoplasia of the acetabulae and iliac alae are usually present.  Birth weight is often low.  Joints may be hyperflexible as part of the generalized hypotonia. The eyes are deep-set, the nasal bridge is prominent, the midface is flat, and the supraorbital ridges are prominent giving the face a rather coarse look.  Prognathism with a prominent lower lip and dental malocclusion reinforce this appearance.  Seizures beginning in early childhood may be difficult to control.  Most patients have severe psychomotor retardation and never acquire speech.

Genetics

The genetics of this familial disorder remain unknown.  No locus or mutation has been identified but one patient had an absent maternal allele of the proximal 15q region as found in Angelman syndrome.

Orofaciodigital syndrome IX (258865) is another autosomal recessive syndrome sometimes called Gurrieri syndrome.  In Gurrieri’s original description of two brothers, chorioretinal lacunae, similar to those seen in Aicardi syndrome (304050), were present.  The systemic features are dissimilar, however.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

GM1 Gangliosidosis

Clinical Characteristics
Ocular Features: 

Based on clinical manifestations, three types have been described: type I or infantile form, type II or late-infantile/juvenile form, and type III or adult/chronic form but all are due to mutations in the same gene.  Only the infantile form has the typical cherry red spot in the macula but is present in only about 50% of infants.  The corneal clouding is due to intracellular accumulations of mucopolysaccharides in corneal epithelium and keratan sulfate in keratocytes.  Retinal ganglion cells also have accumulations of gangliosides.  Decreased acuity, nystagmus, strabismus and retinal hemorrhages have been described. 

Systemic Features: 

Infants with type I disease are usually hypotonic from birth but develop spasticity, psychomotor retardation, and hyperreflexia within 6 months.  Early death from cardiopulmonary disease or infection is common.  Hepatomegaly, coarse facial features, brachydactyly, and cardiomyopathy with valvular dysfunction are common.  Dermal melanocytosis has also been described in infants in a pattern some have called Mongolian spots.  Skeletal dysplasia is a feature and often leads to vertebral deformities and scoliosis.  The ears are often large and low-set, the nasal bridge is depressed, the tongue is enlarged and frontal bossing is often striking.  Hirsutism, coarse skin, short digits, and inguinal hernias are common.

The juvenile form, type II, has a later onset with psychomotor deterioration, seizures and skeletal changes apparent between 7 and 36 months and death in childhood.  Visceral involvement and cherry-red spots are usually not present. 

Type III, or adult form, is manifest later in the first decade or even sometime by the 4th decade.  Symptoms and signs are more localized.  Neurological signs are evident as dystonia or speech and gait difficulties.  Dementia, parkinsonian signs, and extrapyramidal disease are late features.  No hepatosplenomegaly, facial dysmorphism, or cherry red spots are present in most individuals. Lifespan may be normal in this type. 

Genetics

This is an autosomal recessive lysosomal storage disease secondary to a mutations in GLB1 (3p21.33).  It is allelic to Morquio B disease (MPS IVB) (253010).  The mutations in the beta-galactosidase-1 gene result in intracellular accumulation of GM1 ganglioside, keratan sulfate, and oligosaccharides.  The production of the enzyme varies among different mutations likely accounting for the clinical heterogeneity. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment that effectively alters the disease course. 

References
Article Title: 

Pages

Subscribe to RSS - brachydactyly