bleeding diathesis

Hermansky-Pudlak Syndrome

Clinical Characteristics
Ocular Features: 

Oculocutaneous hypopigmentation is common to all types of HPS.  The ocular manifestations are similar to that of other types of albinism.  Iris transillumination defects, nystagmus, and strabismus are common features.   Visual acuity is usually stable in the range of 20/40-20/300 and often accompanied by photophobia.  Foveal hypoplasia and fundus hypopigmentation are present similar to that found in other hypopigmentation disorders.  The same is true of excessive decussation of retinal neuron axons at the chiasm.  Many patients have significant refractive errors. 

Systemic Features: 

In addition to decreased hair, ocular, and skin pigmentation, HPS patients suffer from bleeding diathesis, platelet deficiencies, and accumulation of ceroid material in lysosomes.  Pigment can be found in large amounts in reticuloendothelial cells and in the walls of small blood vessels.  Some of the same features are found in Chediak-Higashi  syndrome (214500) which, however, has additional qualitative changes in leukocytes.   HPS2 differs from other forms of HPS in having immunodeficiency and congenital neutropenia.  Some patients, especially those with HPS1 and HPS4 mutations, have restrictive lung disease secondary to pulmonary fibrosis often causing symptoms in the third and fourth decades of life.  Others have granulomatous colitis, kidney failure, and cardiomyopathy.  Solar skin damage is a risk with actinic keratosis, nevi, lentigines and basal cell carcinoma seen in many patients.

Bleeding time is prolonged secondary to an impairment of the normal aggregation response of platelets.  Easy bruising, epistaxis, prolonged bleeding during menstruation, after tooth extraction, and after minor surgical procedures are often reported.  Platelets lack the normal number of 'dense bodies'.  Coagulation factor activity and platelet counts are normal.

The amount of hair and skin pigmentation is highly variable.  Some patients are so lightly pigmented that they are misdiagnosed as having tyrosinase-negative albinism while others have yellow to brown hair with irides blue to hazel.  Some darkening of hair is common. 

Genetics

This is an autosomal recessive genetically heterogeneous condition resulting from mutations in at least 12 loci: HPS1 (203300) at 10q23.1-q23.2, AP3B1 causing HPS2 (608233) at 5q14.1, and AP3D1 (617050) at 19p13.3 causing HPS 10, whereas in types HPS3 (606118) at 3q24, HPS4 (606682) at 22q11.2-q12.2, HPS5 (607521) at 11p15-p13, HPS6 (607522) at 10q24.32 the mutations themselves have not been characterized.  HPS7 is caused by mutations in the DTNBP1 gene (607145) located at locus 6p22.3 and HPS8 by mutations in the BLOC1S3 gene (609762) at 19q13.  The nature of the mutations is variable and often unique to the population in which they are found. 

Chediak-Higashi  syndrome (214500) is a somewhat similar disorder but with leukocyte abnormalities and results from a different gene mutation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

It has been suggested that any patients with pigmentation disorders should be asked about bleeding problems to rule out HPS.  A hematologic consultation should be obtained if necessary, especially before elective surgery, to avoid bleeding complications through the use of appropriate preoperative measures.   Low vision aids can be helpful.  The skin should be protected from sunburn.  Lifelong surveillance is required for ocular and systemic problems.  The use of aspirin and indomethacin should be avoided. 

References
Article Title: 

Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome

Ammann S, Schulz A, Krageloh-Mann I, Dieckmann NM, Niethammer K, Fuchs S, Eckl KM, Plank R, Werner R, Altmuller J, Thiele H, Nurnberg P, Bank J, Strauss A, von Bernuth H, Zur Stadt U, Grieve S, Griffiths GM, Lehmberg K, Hennies HC, Ehl S. Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood. 2016 Feb 25;127(8):997-1006.

PubMed ID: 
26744459

Noonan Syndrome

Clinical Characteristics
Ocular Features: 

Noonan syndrome has prominent anomalies of the periocular structures including downward-slanting lid fissures, hypertelorism, epicanthal folds, high upper eyelid crease, and some limitation of ocular mobility most commonly of the levator.  Ptosis and strabismus are present in nearly half of patients. Amblyopia has been found in one-third of patients and almost 10% have nystagmus.  Corneal nerves are prominent and a substantial number of individuals have optic nerve abnormalities including drusen, hypoplasia, colobomas and myelinated nerves.  Evidence of an anterior stromal dystrophy, cataracts, or panuveitis is seen in a minority of patients.  About 95% of patients have some ocular abnormalities.

Systemic Features: 

Patients are short in stature.  Birth weight and length may be normal but lymphedema is often present in newborns.  The neck is usually webbed (pterygium colli) and the ears low-set.  The sternum may be deformed.  Cardiac anomalies such as coarctation of the aorta, pulmonary valve stenosis, hypertrophic cardiomyopathy, and septal defects are present in more than half of patients.  Dysplasia of the pulmonic valve has been reported as well.  Thrombocytopenia and abnormal platelet function with abnormalities of coagulation factors are found in about 50% of cases resulting in easy bruising and prolonged bleeding.  Cryptorchidism is common in males.  Some patients have intellectual disabilities with speech and language problems.  Most have normal intelligence.   

Parents of affected children often have subtle signs of Noonan Syndrome.

Genetics

This is an autosomal dominant disorder that can result from mutations in at least 7 genes.  Nearly half are caused by mutations in the PTPN11 gene (12q24.1) (163950).  Mutations in the SOS1 gene (2p22-p21) cause NS4 (610733) and account for 10-20% of cases, those in the RAF1 gene (3p25) causing NS5 (611553) for about the same proportion, and mutations in the KRAS gene (12p12.1) (NS3; 609942) cause about 1%.  Mutations in BRAF (7q34) causing NS7 (613706), NRAS (1p13.2) responsible for NS6 (613224), and MEK1 genes have also been implicated and it is likely that more mutations will be found.  The phenotype is similar in all individuals but with some variation in the frequency and severity of specific features.  New mutations are common. 

Several families suggestive of autosomal recessive inheritance (NS2) (605275) have been reported but no homozygous genotype has been identified.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no treatment for most of the developmental problems but some patients benefit from special education. Cardiac surgery may be required in some cases to correct the developmental defects.  Bleeding problems can be treated with supplementation of the defective coagulation factor.  Growth hormone therapy can increase the growth velocity.

References
Article Title: 

Update on turner and noonan syndromes

Chacko E, Graber E, Regelmann MO, Wallach E, Costin G, Rapaport R. Update on turner and noonan syndromes. Endocrinol Metab Clin North Am. 2012 Dec;41(4):713-34. Epub 2012 Sep 28.

PubMed ID: 
23099266
Subscribe to RSS - bleeding diathesis